1887

Abstract

Avian adenovirus CELO (chicken embryo lethal orphan virus, fowl adenovirus type 1) incorporates two different homotrimeric fiber proteins extending from the same penton base: a long fiber (designated fiber 1) and a short fiber (designated fiber 2). The short fibers extend straight outwards from the viral vertices, whilst the long fibers emerge at an angle. In contrast to the short fiber, which binds an unknown avian receptor and has been shown to be essential to the invasiveness of this virus, the long fiber appears to be unnecessary for infection in birds. Both fibers contain a short N-terminal virus-binding peptide, a slender shaft domain and a globular C-terminal head domain; the head domain, by analogy with human adenoviruses, is likely to be involved mainly in receptor binding. This study reports the high-resolution crystal structure of the head domain of the long fiber, solved using single isomorphous replacement (using anomalous signal) and refined against data at 1.6 Å (0.16 nm) resolution. The C-terminal globular head domain had an anti-parallel -sandwich fold formed by two four-stranded -sheets with the same overall topology as human adenovirus fiber heads. The presence in the sequence of characteristic repeats N-terminal to the head domain suggests that the shaft domain contains a triple -spiral structure. Implications of the structure for the function and stability of the avian adenovirus long fiber protein are discussed; notably, the structure suggests a different mode of binding to the coxsackievirus and adenovirus receptor from that proposed for the human adenovirus fiber heads.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82845-0
2007-09-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/9/2407.html?itemId=/content/journal/jgv/10.1099/vir.0.82845-0&mimeType=html&fmt=ahah

References

  1. Bewley M. C., Springer K., Zhang Y. B., Freimuth P., Flanagan J. M. 1999; Structural analysis of the mechanism of adenovirus binding to its human cellular receptor, CAR. Science 286:1579–1583 [CrossRef]
    [Google Scholar]
  2. Burmeister W. P., Guilligay D., Cusack S., Wadell G., Arnberg N. 2004; Crystal structure of species D adenovirus fiber knobs and their sialic acid binding sites. J Virol 78:7727–7736 [CrossRef]
    [Google Scholar]
  3. Chappell J. D., Prota A. E., Dermody T. S., Stehle T. 2002; Crystal structure of reovirus attachment protein σ 1 reveals evolutionary relationship to adenovirus fiber. EMBO J 21:1–11 [CrossRef]
    [Google Scholar]
  4. Chiocca S., Kurzbauer R., Schaffner G., Baker A., Mautner V., Cotten M. 1996; The complete DNA sequence and genomic organization of the avian adenovirus CELO. J Virol 70:2939–2949
    [Google Scholar]
  5. Collaborative Computational Project Number 4: 1994; The ccp4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 50:760–763 [CrossRef]
    [Google Scholar]
  6. Cowen B., Calnek B. W., Menendez N. A., Ball R. F. 1978; Avian adenoviruses: effect on egg production, shell quality, and feed consumption. Avian Dis 22:459–470 [CrossRef]
    [Google Scholar]
  7. Cowtan K., Main P. 1998; Miscellaneous algorithms for density modification. Acta Crystallogr D Biol Crystallogr 54:487–493 [CrossRef]
    [Google Scholar]
  8. Durmort C., Stehlin C., Schoehn G., Mitraki A., Drouet E., Cusack S., Burmeister W. P. 2001; Structure of the fiber head of Ad3, a non-CAR-binding serotype of adenovirus. Virology 285:302–312 [CrossRef]
    [Google Scholar]
  9. Esnouf R. M. 1997; An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J Mol Graph Model 15:132–134 [CrossRef]
    [Google Scholar]
  10. Fabry C. M., Rosa-Calatrava M., Conway J. F., Zubieta C., Cusack S., Ruigrok R. W., Schoehn G. 2005; A quasi-atomic model of human adenovirus type 5 capsid. EMBO J 24:1645–1654 [CrossRef]
    [Google Scholar]
  11. Francois A., Chevalier C., Delmas B., Eterradossi N., Toquin D., Rivallan G., Langlois P. 2004; Avian adenovirus CELO recombinants expressing VP2 of infectious bursal disease virus induce protection against bursal disease in chickens. Vaccine 22:2351–2360 [CrossRef]
    [Google Scholar]
  12. Freimuth P., Springer K., Berard C., Hainfeld J., Bewley M., Flanagan J. 1999; Coxsackievirus and adenovirus receptor amino-terminal immunoglobulin V-related domain binds adenovirus type 2 and fiber knob from adenovirus type 12. J Virol 73:1392–1398
    [Google Scholar]
  13. Guardado-Calvo P., Fox G. C., Hermo-Parrado X. L., Llamas-Saiz A. L., Costas C., Martinez-Costas J. M., Benavente J., van Raaij M. J. 2005; Structure of the carboxy-terminal receptor-binding domain of avian reovirus fibre σ C. J Mol Biol 354:137–149 [CrossRef]
    [Google Scholar]
  14. Guardado-Calvo P., Llamas-Saiz A. L., Langlois P., van Raaij M. J. 2006; Crystallization of the C-terminal head domain of the avian adenovirus CELO long fibre. Acta Crystallograph Sect F Struct Biol Cryst Commun 62:449–452 [CrossRef]
    [Google Scholar]
  15. Henrick K., Thornton J. M. 1998; PQS: a protein quaternary structure file server. Trends Biochem Sci 23:358–361 [CrossRef]
    [Google Scholar]
  16. Hess M., Cuzange A., Ruigrok R. W., Chroboczek J., Jacrot B. 1995; The avian adenovirus penton: two fibres and one base. J Mol Biol 252:379–385 [CrossRef]
    [Google Scholar]
  17. Jones S., Thornton J. M. 1996; Principles of protein–protein interactions. Proc Natl Acad Sci U S A 93:13–20 [CrossRef]
    [Google Scholar]
  18. Jones T. A., Zou J.-Y., Cowan S. W., Kjeldgaard M. 1991; Improved methods for building protein models in electron density maps and location of errors in these models. Acta Crystallogr A 47:110–119 [CrossRef]
    [Google Scholar]
  19. Kelleher Z. T., Vos J. M. 1994; Long-term episomal gene delivery in human lymphoid cells using human and avian adenoviral-assisted transfection. Biotechniques 17:1110–1117
    [Google Scholar]
  20. Kirby I., Davison E., Beavil A. J., Soh C. P., Wickham T. J., Roelvink P. W., Kovesdi I., Sutton B. J., Santis G. 1999; Mutations in the DG loop of adenovirus type 5 fiber knob protein abolish high-affinity binding to its cellular receptor CAR. J Virol 73:9508–9514
    [Google Scholar]
  21. Kraulis P. J. 1991; molscript: a program to produce both detailed and schematic plots of protein structures. J Appl Crystallogr 24:946–950 [CrossRef]
    [Google Scholar]
  22. Lamzin V. S., Wilson K. S. 1993; Automated refinement of protein models. Acta Crystallogr D Biol Crystallogr 49:129–149 [CrossRef]
    [Google Scholar]
  23. Laskowski R. A., MacArthur M. W., Moss D. S., Thornton J. M. 1993; procheck: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291 [CrossRef]
    [Google Scholar]
  24. Laver W. G., Younghusband H. B., Wrigley N. G. 1971; Purification and properties of chick embryo lethal orphan virus (an avian adenovirus). Virology 45:598–614 [CrossRef]
    [Google Scholar]
  25. Law L. K., Davidson B. L. 2005; What does it take to bind CAR?. Mol Ther 12:599–609 [CrossRef]
    [Google Scholar]
  26. Logunov D. Y., Ilyinskaya G. V., Cherenova L. V., Verhovskaya L. V., Shmarov M. M., Chumakov P. M., Kopnin B. P., Naroditsky B. S. 2004; Restoration of p53 tumor-suppressor activity in human tumor cells in vitro and in their xenografts in vivo by recombinant avian adenovirus CELO–p53. Gene Ther 11:79–84 [CrossRef]
    [Google Scholar]
  27. Lortat-Jacob H., Chouin E., Cusack S., van Raaij M. J. 2001; Kinetic analysis of adenovirus fiber binding to its receptor reveals an avidity mechanism for trimeric receptor–ligand interactions. J Biol Chem 276:9009–9015 [CrossRef]
    [Google Scholar]
  28. McCoy A. J., Grosse-Kunstleve R. W., Storoni L. C., Read R. J. 2005; Likelihood-enhanced fast translation functions. Acta Crystallogr D Biol Crystallogr 61:458–464 [CrossRef]
    [Google Scholar]
  29. McCracken R. M., Adair B. M. 1993; Avian adenoviruses. In Viral Infections of Vertebrates vol. 3 pp 123–144 Edited by McFerran J. B., McNulty M. S. Amsterdam: Elsevier;
    [Google Scholar]
  30. Merckel M. C., Huiskonen J. T., Bamford D. H., Goldman A., Tuma R. 2005; The structure of the bacteriophage PRD1 spike sheds light on the evolution of viral capsid architecture. Mol Cell 18:161–170 [CrossRef]
    [Google Scholar]
  31. Murshudov G. N., Vagin A. A., Dodson E. J. 1997; Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53:240–255 [CrossRef]
    [Google Scholar]
  32. Navaza J. 2001; Implementation of molecular replacement in AMoRe. Acta Crystallogr D Biol Crystallogr 57:1367–1372 [CrossRef]
    [Google Scholar]
  33. Otwinowski Z., Minor W. 1997; Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276:307–326
    [Google Scholar]
  34. Papanikolopoulou K., Teixeira S., Belrhali H., Forsyth V. T., Mitraki A., van Raaij M. J. 2004; Adenovirus fibre shaft sequences fold into the native triple β -spiral fold when N-terminally fused to the bacteriophage T4 fibritin foldon trimerisation motif. J Mol Biol 342:219–227 [CrossRef]
    [Google Scholar]
  35. Perrakis A., Morris R. M., Lamzin V. S. 1999; Automated protein model building combined with iterative structure refinement. Nat Struct Biol 6:458–463 [CrossRef]
    [Google Scholar]
  36. Potterton L., McNicholas S., Krissinel E., Gruber J., Cowtan K., Emsley P., Murshudov G. N., Cohen S., Perrakis A., Noble M. 2004; Developments in the CCP4 molecular-graphics project. Acta Crystallogr D Biol Crystallogr 60:2288–2294 [CrossRef]
    [Google Scholar]
  37. Pruitt K. D., Tatusova T., Maglott D. R. 2005; NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 33:D501–D504 [CrossRef]
    [Google Scholar]
  38. Roelvink P. W., Mi Lee G., Einfeld D. A., Kovesdi I., Wickham T. J. 1999; Identification of a conserved receptor-binding site on the fiber proteins of CAR-recognizing adenoviridae. Science 286:1568–1571 [CrossRef]
    [Google Scholar]
  39. Saban S. D., Silvestry M., Nemerow G. R., Stewart P. L. 2006; Visualization of α -helices in a 6 Å resolution cyroelectron microscopy structure of adenovirus allows refinement of capsid protein assignments. J Virol 80:12049–12059 [CrossRef]
    [Google Scholar]
  40. Schneider T. R., Sheldrick G. M. 2002; Substructure solution with shelxd. Acta Crystallogr D Biol Crystallogr 58:1772–1779 [CrossRef]
    [Google Scholar]
  41. Seiradake E., Cusack S. 2005; Crystal structure of enteric adenovirus serotype 41 short fiber head. J Virol 79:14088–14094 [CrossRef]
    [Google Scholar]
  42. Seiradake E., Lortat-Jacob H., Billet O., Kremer E. J., Cusack S. 2006; Structural and mutational analysis of human Ad37 and canine adenovirus 2 fibre heads in complex with the D1 domain of CAR. J Biol Chem 281:33704–33716 [CrossRef]
    [Google Scholar]
  43. Shashkova E. V., Cherenova L. V., Kazansky D. B., Doronin K. 2005; Avian adenovirus vector CELO-TK displays anticancer activity in human cancer cells and suppresses established murine melanoma tumors. Cancer Gene Ther 12:617–626 [CrossRef]
    [Google Scholar]
  44. Spinelli S., Desmyter A., Verrips C. T., de Haard H. J., Moineau S., Cambillau C. 2006a; Lactococcal bacteriophage p2 receptor-binding protein structure suggests a common ancestor gene with bacterial and mammalian viruses. Nat Struct Mol Biol 13:85–89 [CrossRef]
    [Google Scholar]
  45. Spinelli S., Campanacci V., Blangy S., Moineau S., Tegoni M., Cambillau C. 2006b; Modular structure of the receptor binding proteins of Lactococcus lactis phages. The RBP structure of the temperate phage TP901-1. J Biol Chem 281:14256–14262 [CrossRef]
    [Google Scholar]
  46. Stevenson M., Boos E., Herbert C., Hale A., Green N., Lyons M., Chandler L., Ulbrich K., van Rooijen N. other authors 2006; Chick embryo lethal orphan virus can be polymer-coated and retargeted to infect mammalian cells. Gene Ther 13:356–368 [CrossRef]
    [Google Scholar]
  47. Tan P. K., Michou A. I., Bergelson J. M., Cotten M. 2001; Defining CAR as a cellular receptor for the avian adenovirus CELO using a genetic analysis of the two viral fibre proteins. J Gen Virol 82:1465–1472
    [Google Scholar]
  48. van Raaij M. J., Louis N., Chroboczek J., Cusack S. 1999a; Structure of the human adenovirus serotype 2 fiber head domain at 1.5 Å resolution. Virology 262:333–343 [CrossRef]
    [Google Scholar]
  49. van Raaij M. J., Mitraki A., Lavigne G., Cusack S. 1999b; A triple β -spiral in the adenovirus fibre shaft reveals a new structural motif for a fibrous protein. Nature 401:935–938 [CrossRef]
    [Google Scholar]
  50. Xia D., Henry L. J., Gerard R. D., Deisenhofer J. 1994; Crystal structure of the receptor-binding domain of adenovirus type 5 fiber protein at 1.7 A resolution. Structure 2:1259–1270 [CrossRef]
    [Google Scholar]
  51. Zubieta C., Schoehn G., Chroboczek J., Cusack S. 2005; The structure of the human adenovirus 2 penton. Mol Cell 17:121–135 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82845-0
Loading
/content/journal/jgv/10.1099/vir.0.82845-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error