1887

Abstract

The coat protein (CP) of potato leafroll virus (PLRV) is the primary component of the capsid, and is a multifunctional protein known to be involved in vector transmission and virus movement within plant hosts, in addition to particle assembly. Thirteen mutations were generated in various regions of the CP and tested for their ability to affect virus–host and virus–vector interactions. Nine of the mutations prevented the assembly of stable virions. These mutants were unable to infect systemically four different host species. Furthermore, although virus replication and translation of the CP were similar for the mutants and wild-type virus in individual plant cells, the translation of the CP readthrough product was affected in several of the mutants. Four of the mutants were able to assemble stable particles and infect host plants systemically, similarly to the wild-type virus; however, two of the mutants were transmitted less efficiently by aphid vectors. Based on a computer-generated model of the PLRV CP, the mutations that prevented virion assembly were associated with subunit interfaces, while the amino acid alterations in the assembly-competent mutants were associated with surface loops. This and previous work indicates that the CP structural model has value in predicting the structural architecture of the virion.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82837-0
2007-06-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/6/1821.html?itemId=/content/journal/jgv/10.1099/vir.0.82837-0&mimeType=html&fmt=ahah

References

  1. Ashoub A., Rohde W., Prufer D. 1998; In planta transcription of a second subgenomic RNA increases the complexity of the subgroup 2 luteovirus genome. Nucleic Acids Res 26:420–426 [CrossRef]
    [Google Scholar]
  2. Bahner I., Lamb J., Mayo M. A., Hay R. T. 1990; Expression of the genome of potato leafroll virus: readthrough of the coat protein termination codon in vivo . J Gen Virol 71:2251–2256 [CrossRef]
    [Google Scholar]
  3. Brault V., van den Heuvel J., Verbeek M., Ziegler-Graff V., Reutenauer A., Herrbach E., Garaud J. C., Guilley H., Richards K., Jonard G. 1995; Aphid transmission of beet western yellows luteovirus requires the minor capsid read-through protein P74. EMBO J 14:650–659
    [Google Scholar]
  4. Brault V., Mutterer J., Scheidecker D., Simonis M. T., Herrbach E., Richards K., Ziegler-Graff V. 2000; Effects of point mutations in the readthrough domain of the beet western yellows virus minor capsid protein on virus accumulation in planta and on transmission by aphids. J Virol 74:1140–1148 [CrossRef]
    [Google Scholar]
  5. Brault V., Bergdoll M., Mutterer J., Prasad V., Pfeffer S., Erdinger M., Richards K. E., Ziegler-Graff V. 2003; Effects of point mutations in the major capsid protein of beet western yellows virus on capsid formation, virus accumulation, and aphid transmission. J Virol 77:3247–3256 [CrossRef]
    [Google Scholar]
  6. Brown C. M., Dinesh-Kumar S. P., Miller W. A. 1996; Local and distant sequences are required for efficient readthrough of the barley yellow dwarf virus PAV coat protein gene stop codon. J Virol 70:5884–5892
    [Google Scholar]
  7. Bruyere A., Brault V., Ziegler-Graff V., Simonis M. T., van den Heuvel J., Richards K., Guilley H., Jonard G., Herrbach E. 1997; Effects of mutations in the beet western yellows virus readthrough protein on its expression and packaging and on virus accumulation, symptoms, and aphid transmission. Virology 230:323–334 [CrossRef]
    [Google Scholar]
  8. Bujnicki J. M., Elofsson A., Fischer D., Rychlewski L. 2001; Structure prediction meta server. Bioinformatics 17:750–751 [CrossRef]
    [Google Scholar]
  9. Callaway A., Giesman-Cookmeyer D., Gillock E. T., Sit T. L., Lommel S. A. 2001; The multifunctional capsid proteins of plant RNA viruses. Annu Rev Phytopathol 39:419–460 [CrossRef]
    [Google Scholar]
  10. Chay C. A., Gunasinge U. B., Dinesh-Kumar S. P., Miller W. A., Gray S. M. 1996; Aphid transmission and systemic plant infection determinants of barley yellow dwarf luteovirus-PAV are contained in the coat protein readthrough domain and 17-kDa protein, respectively. Virology 219:57–65 [CrossRef]
    [Google Scholar]
  11. Dolja V. V., Koonin E. V. 1991; Phylogeny of capsid proteins of small icosahedral RNA plant viruses. J Gen Virol 72:1481–1486 [CrossRef]
    [Google Scholar]
  12. Filichkin S. A., Lister R. M., McGrath P. F., Young M. J. 1994; In vivo expression and mutational analysis of the barley yellow dwarf virus readthrough gene. Virology 205:290–299 [CrossRef]
    [Google Scholar]
  13. Fox J. M., Johnson J. E., Young M. J. 1994; RNA/protein interactions in icosahedral virus assembly. Semin Virol 5:51–60 [CrossRef]
    [Google Scholar]
  14. Franco-Lara L. F., McGeachy D. K., Commandeur U., Martin R. R., Mayo M. A., Barker H. 1999; Transformation of tobacco and potato with cDNA encoding the full-length genome of potato leafroll virus: evidence for a novel virus distribution and host effects on virus multiplication. J Gen Virol 80:2813–2822
    [Google Scholar]
  15. Frisch D. A., Harrishaller L. W., Yokubaitis N. T., Thomas T. L., Hardin S. H., Hall T. C. 1995; Complete sequence of the binary vector Bin 19. Plant Mol Biol 27:405–409 [CrossRef]
    [Google Scholar]
  16. Gildow F. E., Reavy B., Mayo M. A., Duncan G. H., Woodford J. A. T., Lamb J. W., Hay R. T. 2000; Aphid acquisition and cellular transport of potato leafroll virus-like particles lacking P5 readthrough protein. Phytopathology 90:1153–1161 [CrossRef]
    [Google Scholar]
  17. Gray S. M., Rochon D. 1999; Vector transmission of plant viruses. In Encyclopedia of Virology , 2nd edn. pp 1899–1910 Edited by Granoff A., Webster R. G. San Diego: Academic Press;
    [Google Scholar]
  18. Harrison B. D. 1999; Steps in the development of ‘Luteovirology’. In The Luteoviridae pp 1–14 Edited by Smith H. G., Barker H. Wallingford, UK: CABI Publishing;
    [Google Scholar]
  19. Harrison S. C., Olson A. J., Schutt C. E., Winkler F. K., Brigogne G. 1978; Tomato bushy stunt virus at 2.9 Å resolution. Nature 276:368–373 [CrossRef]
    [Google Scholar]
  20. Johnson J. E. 2003; Virus particle dynamics. Adv Protein Chem 64:197–218
    [Google Scholar]
  21. Kelley L. A., MacCallum R. M., Sternberg M. J. 2000; Enhanced genome annotation using structural profiles in the program 3D-pssm. J Mol Biol 299:499–520
    [Google Scholar]
  22. Kojima M., Shikata E., Sugawara M., Murayama D. 1969; Purification and electron microscopy of potato leafroll virus. Virology 39:162 [CrossRef]
    [Google Scholar]
  23. Lee L., Palukaitis P., Gray S. M. 2002; Host-dependent requirement for the potato leafroll virus 17-kDa protein in virus movement. Mol Plant Microbe Interact 15:1086–1094 [CrossRef]
    [Google Scholar]
  24. Lee L., Kaplan I. B., Ripoll D. R., Liang D., Palukaitis P., Gray S. M. 2005; A surface loop of the potato leafroll virus coat protein is involved in virion assembly, systemic movement, and aphid transmission. J Virol 79:1207–1214 [CrossRef]
    [Google Scholar]
  25. Liang D., Gray S. M., Kaplan I., Palukaitis P. 2004; Site-directed mutagenesis and generation of chimeric viruses by homologous recombination in yeast to facilitate analysis of plant-virus interactions. Mol Plant Microbe Interact 17:571–576 [CrossRef]
    [Google Scholar]
  26. Mayo M. A., D'Arcy C. J. 1999; Family Luteoviridae : a reclassification of luteoviruses. In The Luteoviridae pp 15–22 Edited by Smith H. G., Barker H. Wallingford, UK: CABI Publishing;
    [Google Scholar]
  27. Mayo M. A., Ziegler-Graff V. 1996; Molecular biology of luteoviruses. Adv Virus Res 46:413–460
    [Google Scholar]
  28. Miller W. A., Dinesh-Kumar S. P., Paul C. P. 1995; Luteovirus gene expression. Crit Rev Plant Sci 14:179–211 [CrossRef]
    [Google Scholar]
  29. Nurkiyanova K. M., Ryabov E. V., Commandeur U., Duncan G. H., Canto T., Gray S. M., Mayo M. A., Taliansky M. E. 2000; Tagging potato leafroll virus with the jellyfish green fluorescent protein gene. J Gen Virol 81:617–626
    [Google Scholar]
  30. Pfeffer S., Dunoyer P., Heim F., Richards K. E., Jonard G., Ziegler-Graff V. 2002; P0 of beet western yellows virus is a suppressor of posttranscriptional gene silencing. J Virol 76:6815–6824 [CrossRef]
    [Google Scholar]
  31. Reinbold C., Gildow F. E., Herrbach E., Ziegler-Graff V., Goncalves M. C., van den Heuvel J., Brault V. 2001; Studies on the role of the minor capsid protein in transport of beet western yellows virus through Myzus persicae . J Gen Virol 82:1995–2007
    [Google Scholar]
  32. Reutenauer A., Ziegler-Graff V., Lot H., Scheidecker D., Guilley H., Richards K., Jonard G. 1993; Identification of beet western yellows luteovirus genes implicated in viral replication and particle morphogenesis. Virology 195:692–699 [CrossRef]
    [Google Scholar]
  33. Sali A., Blundell T. L. 1993; Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815 [CrossRef]
    [Google Scholar]
  34. Sambrook J., Fritsch E., Maniatis T. 1989 Molecular Cloning Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  35. Terradot L., Souchet M., Tran V., Ducray-Bourdin D. G. 2001; Analysis of a three-dimensional structure of potato leafroll virus coat protein obtained by homology modeling. Virology 286:72–82 [CrossRef]
    [Google Scholar]
  36. Torrance L. 1992; Analysis of epitopes on potato leafroll virus capsid protein. Virology 191:485–489 [CrossRef]
    [Google Scholar]
  37. van den Heuvel J. F., Hogenhout S. A., van der Wilk F. 1999; Recognition and receptors in virus transmission by arthropods. Trends Microbiol 7:71–76 [CrossRef]
    [Google Scholar]
  38. Waigmann E., Ueki S., Trutnyeva K., Citovsky V. 2004; The ins and outs of nondestructive cell-to-cell and systemic movement of plant viruses. Crit Rev Plant Sci 23:195–250 [CrossRef]
    [Google Scholar]
  39. Ziegler-Graff V., Brault V., Mutterer J. D., Simonis M. T., Herrbach E., Guilley H., Richards K. E., Jonard G. 1996; The coat protein of beet western yellows luteovirus is essential for systemic infection but the viral gene products P29 and P19 are dispensable for systemic infection and aphid transmission. Mol Plant Microbe Interact 9:501–510 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82837-0
Loading
/content/journal/jgv/10.1099/vir.0.82837-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error