1887

Abstract

The use of attenuated classical swine fever virus (CSFV) strains as live vaccines is no longer allowed for the control of classical swine fever in Europe, due to the inability to differentiate between infected and vaccinated animals (Differentiating Infected from Vaccinated Animals; DIVA), except as emergency vaccines or as bait vaccines for wild boars. Thus, the establishment of a DIVA vaccine(s) is of pivotal importance for the control of this infectious disease. In this study, recombinant versions of the live-attenuated vaccine strain CSFV Riems were generated by replacing parts of the E2 gene with the corresponding sequence of border disease virus strain Gifhorn. Three cDNA clones were constructed: pRiems-ABC-Gif, pRiems-A-Gif and pRiems-BC-Gif. Infectious particles were obtained from clones pRiems-ABC-Gif and pRiems-BC-Gif only, whereas transfected RNA from clone pRiems-A-Gif behaved like a replicon. Based on its ability to be differentiated from wild-type CSFV by mAbs, vRiems-ABC-Gif was assessed for immunogenicity and protection against challenge infection in pigs. Before challenge, no CSFV-specific anti-E2 antibodies could be detected with commercial E2-blocking ELISAs in vRiems-ABC-Gif-vaccinated animals, whereas vRiems-vaccinated pigs developed high titres of anti-E2 antibodies, confirming the marker properties of this vaccine candidate. After oral vaccination, only partial protection against challenge infection was observed in the vRiems-ABC-Gif vaccinees, whereas all intramuscularly vaccinated animals and all vRiems-vaccinated animals were fully protected. These experiments suggest that the strategy of exchanging specific antigenic epitopes among pestiviruses is a promising tool for the development of new CSFV marker vaccines.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82798-0
2007-08-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/8/2247.html?itemId=/content/journal/jgv/10.1099/vir.0.82798-0&mimeType=html&fmt=ahah

References

  1. Ahrens, U., Kaden, V., Drexler, C. & Visser, N. ( 2000; ). Efficacy of the classical swine fever (CSF) marker vaccine Porcilis Pesti in pregnant sows. Vet Microbiol 77, 83–97.[CrossRef]
    [Google Scholar]
  2. Artois, M., Depner, K. R., Guberti, V., Hars, J., Rossi, S. & Rutili, D. ( 2002; ). Classical swine fever (hog cholera) in wild boar in Europe. Rev Sci Tech 21, 287–303.
    [Google Scholar]
  3. Becher, P., Ramirez, R. A., Orlich, M., Rosales, S. C., Konig, M., Schweizer, M., Stalder, H., Schirrmeier, H. & Thiel, H. J. ( 2003; ). Genetic and antigenic characterization of novel pestivirus genotypes: implications for classification. Virology 311, 96–104.[CrossRef]
    [Google Scholar]
  4. de Smit, A. J., Bouma, A., de Kluijver, E. P., Terpstra, C. & Moormann, R. J. ( 2000; ). Prevention of transplacental transmission of moderate-virulent classical swine fever virus after single or double vaccination with an E2 subunit vaccine. Vet Q 22, 150–153.[CrossRef]
    [Google Scholar]
  5. de Smit, A. J., Bouma, A., van Gennip, H. G., de Kluijver, E. P. & Moormann, R. J. ( 2001; ). Chimeric (marker) C-strain viruses induce clinical protection against virulent classical swine fever virus (CSFV) and reduce transmission of CSFV between vaccinated pigs. Vaccine 19, 1467–1476.[CrossRef]
    [Google Scholar]
  6. Dong, X. N., Wei, K., Liu, Z. Q. & Chen, Y. H. ( 2002; ). Candidate peptide vaccine induced protection against classical swine fever virus. Vaccine 21, 167–173.[CrossRef]
    [Google Scholar]
  7. Dong, X. N., Chen, Y., Wu, Y. & Chen, Y. H. ( 2005; ). Candidate multi-peptide-vaccine against classical swine fever virus induced potent immunity with serological marker. Vaccine 23, 3630–3633.[CrossRef]
    [Google Scholar]
  8. Dong, X. N., Qi, Y., Ying, J., Chen, X. & Chen, Y. H. ( 2006; ). Candidate peptide-vaccine induced potent protection against CSFV and identified a principal sequential neutralizing determinant on E2. Vaccine 24, 426–434.[CrossRef]
    [Google Scholar]
  9. Donis, R. O. & Dubovi, E. J. ( 1987; ). Glycoproteins of bovine viral diarrhoea-mucosal disease virus in infected bovine cells. J Gen Virol 68, 1607–1616.[CrossRef]
    [Google Scholar]
  10. Edwards, S., Moennig, V. & Wensvoort, G. ( 1991; ). The development of an international reference panel of monoclonal antibodies for the differentiation of hog cholera virus from other pestiviruses. Vet Microbiol 29, 101–108.[CrossRef]
    [Google Scholar]
  11. Edwards, S., Fukusho, A., Lefevre, P. C., Lipowski, A., Pejsak, Z., Roehe, P. & Westergaard, J. ( 2000; ). Classical swine fever: the global situation. Vet Microbiol 73, 103–119.[CrossRef]
    [Google Scholar]
  12. Frey, C. F., Bauhofer, O., Ruggli, N., Summerfield, A., Hofmann, M. A. & Tratschin, J. D. ( 2006; ). Classical swine fever virus replicon particles lacking the Erns gene: a potential marker vaccine for intradermal application. Vet Res 37, 655–670.[CrossRef]
    [Google Scholar]
  13. Greiser-Wilke, I., Moennig, V., Coulibaly, C. O., Dahle, J., Leder, L. & Liess, B. ( 1990; ). Identification of conserved epitopes on a hog cholera virus protein. Arch Virol 111, 213–225.[CrossRef]
    [Google Scholar]
  14. Greiser-Wilke, I., Dittmar, K. E., Liess, B. & Moennig, V. ( 1992; ). Heterogeneous expression of the non-structural protein p80/p125 in cells infected with different pestiviruses. J Gen Virol 73, 47–52.[CrossRef]
    [Google Scholar]
  15. Hammond, J. M., Jansen, E. S., Morrissy, C. J., Goff, W. V., Meehan, G. C., Williamson, M. M., Lenghaus, C., Sproat, K. W., Andrew, M. E. & other authors ( 2001; ). A prime-boost vaccination strategy using naked DNA followed by recombinant porcine adenovirus protects pigs from classical swine fever. Vet Microbiol 80, 101–119.[CrossRef]
    [Google Scholar]
  16. Hofmann, M. A. ( 2003; ). Construction of an infectious chimeric classical swine fever virus containing the 5′UTR of bovine viral diarrhea virus, and its application as a universal internal positive control in real-time RT-PCR. J Virol Methods 114, 77–90.[CrossRef]
    [Google Scholar]
  17. Horton, R. M., Cai, Z. L., Ho, S. N. & Pease, L. R. ( 1990; ). Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction. Biotechniques 8, 528–535.
    [Google Scholar]
  18. Kaden, V., Hubert, P., Strebelow, G., Lange, E., Steyer, H. & Steinhagen, P. ( 1999a; ). Comparison of laboratory diagnostic methods for the detection of infection with the virus of classical swine fever in the early inspection phase: an experimental study. Vergleich labordiagnostischer Methoden zum Nachweis einer Infektion mit dem Virus der Klassischen Schweinepest (KSPV) in der fruhen Infektionsphase: experimentelle Studie. Berl Munch Tierarztl Wochenschr 112, 52–57 (in German).
    [Google Scholar]
  19. Kaden, V., Steyer, H., Strebelow, G., Lange, E., Hubert, P. & Steinhagen, P. ( 1999b; ). Detection of low-virulent classical swine fever virus in blood of experimentally infected animals: comparison of different methods. Acta Virol 43, 373–380.
    [Google Scholar]
  20. Kaden, V., Schurig, U. & Steyer, H. ( 2001; ). Oral immunization of pigs against classical swine fever. Course of the disease and virus transmission after simultaneous vaccination and infection. Acta Virol 45, 23–29.
    [Google Scholar]
  21. Kaden, V., Lange, E., Riebe, R. & Lange, B. ( 2004; ). Classical swine fever virus Strain ‘C’. How long is it detectable after oral vaccination? J Vet Med B Infect Dis Vet Public Health 51, 260–262.[CrossRef]
    [Google Scholar]
  22. Kaden, V., Lange, E., Müller, T., Teuffert, J., Teifke, J. P. & Riebe, R. ( 2006; ). Protection of gruntlings against classical swine fever virus-infection after oral vaccination of sows with C-strain Vaccine. J Vet Med B Infect Dis Vet Public Health 53, 455–460.[CrossRef]
    [Google Scholar]
  23. Kasza, L., Shadduck, J. A. & Christofinis, G. J. ( 1972; ). Establishment, viral susceptibility and biological characteristics of a swine kidney cell line SK-6. Res Vet Sci 13, 46–51.
    [Google Scholar]
  24. Kosmidou, A., Ahl, R., Thiel, H. J. & Weiland, E. ( 1995; ). Differentiation of classical swine fever virus (CSFV) strains using monoclonal antibodies against structural glycoproteins. Vet Microbiol 47, 111–118.[CrossRef]
    [Google Scholar]
  25. Liang, D. L., Sainz, I. F., Ansari, I. H., Gil, L. H., Vassilev, V. & Donis, R. O. ( 2003; ). The envelope glycoprotein E2 is a determinant of cell culture tropism in ruminant pestiviruses. J Gen Virol 84, 1269–1274.[CrossRef]
    [Google Scholar]
  26. Liess, B. & Moennig, V. ( 1990; ). Ruminant pestivirus infection in pigs. Rev Sci Tech 9, 151–161.
    [Google Scholar]
  27. Maurer, R., Stettler, P., Ruggli, N., Hofmann, M. A. & Tratschin, J. D. ( 2005; ). Oronasal vaccination with classical swine fever virus (CSFV) replicon particles with either partial or complete deletion of the E2 gene induces partial protection against lethal challenge with highly virulent CSFV. Vaccine 23, 3318–3328.[CrossRef]
    [Google Scholar]
  28. Mayer, D., Thayer, T. M., Hofmann, M. A. & Tratschin, J. D. ( 2003; ). Establishment and characterisation of two cDNA-derived strains of classical swine fever virus, one highly virulent and one avirulent. Virus Res 98, 105–116.[CrossRef]
    [Google Scholar]
  29. Mendez, E., Ruggli, N., Collett, M. S. & Rice, C. M. ( 1998; ). Infectious bovine viral diarrhea virus (strain NADL) RNA from stable cDNA clones: a cellular insert determines NS3 production and viral cytopathogenicity. J Virol 72, 4737–4745.
    [Google Scholar]
  30. Meyers, G. & Thiel, H. J. ( 1996; ). Molecular characterization of pestiviruses. Adv Virus Res 47, 53–118.
    [Google Scholar]
  31. Mittelholzer, C., Moser, C., Tratschin, J. D. & Hofmann, M. A. ( 1997; ). Generation of cytopathogenic subgenomic RNA of classical swine fever virus in persistently infected porcine cell lines. Virus Res 51, 125–137.[CrossRef]
    [Google Scholar]
  32. Mittelholzer, C., Moser, C., Tratschin, J. D. & Hofmann, M. A. ( 2000; ). Analysis of classical swine fever virus replication kinetics allows differentiation of highly virulent from avirulent strains. Vet Microbiol 74, 293–308.[CrossRef]
    [Google Scholar]
  33. Moormann, R. J. M., Bouma, A., Kramps, J. A., Terpstra, C. & DeSmit, H. J. ( 2000; ). Development of a classical swine fever subunit marker vaccine and companion diagnostic test. Vet Microbiol 73, 209–219.[CrossRef]
    [Google Scholar]
  34. Moser, C., Ruggli, N., Tratschin, J. D. & Hofmann, M. A. ( 1996; ). Detection of antibodies against classical swine fever virus in swine sera by indirect ELISA using recombinant envelope glycoprotein E2. Vet Microbiol 51, 41–53.[CrossRef]
    [Google Scholar]
  35. Rasmussen, T. B., Uttenthal, A., Reimann, I., Nielsen, J., Depner, K. & Beer, M. ( 2007; ). Virulence, immunogenicity and vaccine properties of a novel chimeric pestivirus. J Gen Virol 88, 481–486.[CrossRef]
    [Google Scholar]
  36. Reimann, I., Depner, K., Trapp, S. & Beer, M. ( 2004; ). An avirulent chimeric pestivirus with altered cell tropism protects pigs against lethal infection with classical swine fever virus. Virology 322, 143–157.[CrossRef]
    [Google Scholar]
  37. Ruggli, N., Tratschin, J. D., Mittelholzer, C. & Hofmann, M. A. ( 1996; ). Nucleotide sequence of classical swine fever virus strain Alfort/187 and transcription of infectious RNA from stably cloned full-length cDNA. J Virol 70, 3478–3487.
    [Google Scholar]
  38. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  39. Sanger, F., Nicklen, S. & Coulson, A. R. ( 1977; ). DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74, 5463–5467.[CrossRef]
    [Google Scholar]
  40. Terpstra, C., Bloemraad, M. & Gielkens, A. L. ( 1984; ). The neutralizing peroxidase-linked assay for detection of antibody against swine fever virus. Vet Microbiol 9, 113–120.[CrossRef]
    [Google Scholar]
  41. Thiel, H.-J., Collett, M. S., Gould, E. A., Heinz, F. X., Houghton, M., Meyers, G., Purcell, R. H. & Rice, C. M. ( 2005; ). Genus Pestivirus. In Virus Taxonomy: Eighth Report of the International Committee on Taxonomy of Viruses, pp. 988–992. San Diego, CA: Elsevier Academic Press.
  42. van Gennip, H. G., van Rijn, P. A., Widjojoatmodjo, M. N., de Smit, A. J. & Moormann, R. J. ( 2000; ). Chimeric classical swine fever viruses containing envelope protein ERNS or E2 of bovine viral diarrhoea virus protect pigs against challenge with CSFV and induce a distinguishable antibody response. Vaccine 19, 447–459.[CrossRef]
    [Google Scholar]
  43. van Gennip, H. G., Bouma, A., van Rijn, P. A., Widjojoatmodjo, M. N. & Moormann, R. J. ( 2002; ). Experimental non-transmissible marker vaccines for classical swine fever (CSF) by trans-complementation of Erns or E2 of CSFV. Vaccine 20, 1544–1556.[CrossRef]
    [Google Scholar]
  44. van Oirschot, J. T. ( 2003; ). Vaccinology of classical swine fever: from lab to field. Vet Microbiol 96, 367–384.[CrossRef]
    [Google Scholar]
  45. van Rijn, P. A., Bossers, A., Wensvoort, G. & Moormann, R. J. ( 1996; ). Classical swine fever virus (CSFV) envelope glycoprotein E2 containing one structural antigenic unit protects pigs from lethal CSFV challenge. J Gen Virol 77, 2737–2745.[CrossRef]
    [Google Scholar]
  46. Wang, Z., Nie, Y., Wang, P., Ding, M. & Deng, H. ( 2004; ). Characterization of classical swine fever virus entry by using pseudotyped viruses: E1 and E2 are sufficient to mediate viral entry. Virology 330, 332–341.[CrossRef]
    [Google Scholar]
  47. Wensvoort, G. ( 1989; ). Topographical and functional mapping of epitopes on hog cholera virus with monoclonal antibodies. J Gen Virol 70, 2865–2876.[CrossRef]
    [Google Scholar]
  48. Wensvoort, G., Bloemraad, M. & Terpstra, C. ( 1988; ). An enzyme immunoassay employing monoclonal antibodies and detecting specifically antibodies to classical swine fever virus. Vet Microbiol 17, 129–140.[CrossRef]
    [Google Scholar]
  49. Wensvoort, G., Terpstra, C., de Kluijver, E. P., Kragten, C. & Warnaar, J. C. ( 1989; ). Antigenic differentiation of pestivirus strains with monoclonal antibodies against hog cholera virus. Vet Microbiol 21, 9–20.[CrossRef]
    [Google Scholar]
  50. Widjojoatmodjo, M. N., van Gennip, H. G., Bouma, A., van Rijn, P. A. & Moormann, R. J. ( 2000; ). Classical swine fever virus Erns deletion mutants: trans-complementation and potential use as nontransmissible, modified, live-attenuated marker vaccines. J Virol 74, 2973–2980.[CrossRef]
    [Google Scholar]
  51. Yu, X., Tu, C., Li, H., Hu, R., Chen, C., Li, Z., Zhang, M. & Yin, Z. ( 2001; ). DNA-mediated protection against classical swine fever virus. Vaccine 19, 1520–1525.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82798-0
Loading
/content/journal/jgv/10.1099/vir.0.82798-0
Loading

Data & Media loading...

Supplements

vol. , part 8, pp. 2247 – 2258

Plasmids used for cloning

Oligonucleotides used for PCR-based plasmid construction and RT-PCR

[ Single PDF file] (105 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error