1887

Abstract

Protein translation in noroviruses requires translational processing of a polyprotein precursor by the viral protease. So far, the molecular mechanisms of catalytic cleavage by the viral protease are poorly understood. In this study, the catalytic activities and substrate specificities of the viral protease were examined by using synthetic peptides (11–15 residues) corresponding to the cleavage sites of the norovirus polyprotein. Both predicted forms of the viral protease, the 3C-like protease (3C) and the 3CD-like protease polymerase protein (3CD), displayed a specific cleavage activity of peptides bearing Gln–Gly at the scissile bond. In contrast, peptides bearing Glu–Gly at the scissile bond (p20/VPg and 3C/3D junctions) were resistant to -cleavage by 3C and 3CD. Interestingly, the VPg/3C scissile bond (Glu–Ala) was cleaved only by 3CD, and examination of relative cleavage efficiencies revealed significant differences in processing of peptides, indicating differential cleavage patterns for 3C and 3CD.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82797-0
2007-07-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/7/2013.html?itemId=/content/journal/jgv/10.1099/vir.0.82797-0&mimeType=html&fmt=ahah

References

  1. Belliot, G., Sosnovtsev, S. V., Mitra, T., Hammer, C., Garfield, M. & Green, K. Y. ( 2003; ). In vitro proteolytic processing of the MD145 norovirus ORF1 nonstructural polyprotein yields stable precursors and products similar to those detected in calicivirus-infected cells. J Virol 77, 10957–10974.[CrossRef]
    [Google Scholar]
  2. Blakeney, S. J., Cahill, A. & Reilly, P. A. ( 2003; ). Processing of Norwalk virus nonstructural proteins by a 3C-like cysteine proteinase. Virology 308, 216–224.[CrossRef]
    [Google Scholar]
  3. Chang, K. O., Sosnovtsev, S. V., Belliot, G., King, A. D. & Green, K. Y. ( 2006; ). Stable expression of a Norwalk virus RNA replicon in a human hepatoma cell line. Virology 353, 463–473.[CrossRef]
    [Google Scholar]
  4. Hardy, M. E., Crone, T. J., Brower, J. E. & Ettayebi, K. ( 2002; ). Substrate specificity of the Norwalk virus 3C-like proteinase. Virus Res 89, 29–39.[CrossRef]
    [Google Scholar]
  5. Khan, A. R., Khazanovich-Bernstein, N., Bergmann, E. M. & James, M. N. ( 1999; ). Structural aspects of activation pathways of aspartic protease zymogens and viral 3C protease precursors. Proc Natl Acad Sci U S A 96, 10968–10975.[CrossRef]
    [Google Scholar]
  6. Liu, B. L., Viljoen, G. J., Clarke, I. N. & Lambden, P. R. ( 1999; ). Identification of further proteolytic cleavage sites in the Southampton calicivirus polyprotein by expression of the viral protease in E. coli. J Gen Virol 80, 291–296.
    [Google Scholar]
  7. O'Leary, M. H. & Baughn, R. L. ( 1972; ). Acetoacetate decarboxylase. Identification of the rate-determining step in the primary amine catalyzed reaction and in the enzymic reaction. J Am Chem Soc 94, 626–630.[CrossRef]
    [Google Scholar]
  8. Pallai, P. V., Burkhardt, F., Skoog, M., Schreiner, K., Bax, P., Cohen, K. A., Hansen, G., Palladino, D. E., Harris, K. S. & other authors ( 1989; ). Cleavage of synthetic peptides by purified poliovirus 3C proteinase. J Biol Chem 264, 9738–9741.
    [Google Scholar]
  9. Rohayem, J., Jager, K., Robel, I., Scheffler, U., Temme, A. & Rudolph, W. ( 2006a; ). Characterization of norovirus 3Dpol RNA-dependent RNA polymerase activity and initiation of RNA synthesis. J Gen Virol 87, 2621–2630.[CrossRef]
    [Google Scholar]
  10. Rohayem, J., Robel, I., Jager, K., Scheffler, U. & Rudolph, W. ( 2006b; ). Protein-primed and de novo initiation of RNA synthesis by norovirus 3Dpol. J Virol 80, 7060–7069.[CrossRef]
    [Google Scholar]
  11. Seah, E. L., Marshall, J. A. & Wright, P. J. ( 1999; ). Open reading frame 1 of the Norwalk-like virus Camberwell: completion of sequence and expression in mammalian cells. J Virol 73, 10531–10535.
    [Google Scholar]
  12. Seah, E. L., Marshall, J. A. & Wright, P. J. ( 2003; ). Trans activity of the norovirus Camberwell proteinase and cleavage of the N-terminal protein encoded by ORF1. J Virol 77, 7150–7155.[CrossRef]
    [Google Scholar]
  13. Someya, Y., Takeda, N. & Miyamura, T. ( 2002; ). Identification of active-site amino acid residues in the Chiba virus 3C-like protease. J Virol 76, 5949–5958.[CrossRef]
    [Google Scholar]
  14. Sosnovtsev, S. V., Belliot, G., Chang, K. O., Prikhodko, V. G., Thackray, L. B., Wobus, C. E., Karst, S. M., Virgin, H. W. & Green, K. Y. ( 2006; ). Cleavage map and proteolytic processing of the murine norovirus nonstructural polyprotein in infected cells. J Virol 80, 7816–7831.[CrossRef]
    [Google Scholar]
  15. Thomas, H., Havlis, J., Peychl, J. & Shevchenko, A. ( 2004; ). Dried-droplet probe preparation on AnchorChip targets for navigating the acquisition of matrix-assisted laser desorption/ionization time-of-flight spectra by fluorescence of matrix/analyte crystals. Rapid Commun Mass Spectrom 18, 923–930.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82797-0
Loading
/content/journal/jgv/10.1099/vir.0.82797-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error