1887

Abstract

We have determined the high resolution crystal structure of the methyltransferase domain of the NS5 polypeptide from the Murray Valley encephalitis virus. This domain is unusual in having both the N7 and 2′-O methyltransferase activity required for Cap 1 synthesis. We have also determined structures for complexes of this domain with nucleotides and cap analogues providing information on cap binding, based on which we suggest a model of how the sequential methylation of the N7 and 2′-O groups of the cap may be coordinated.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82757-0
2007-08-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/8/2228.html?itemId=/content/journal/jgv/10.1099/vir.0.82757-0&mimeType=html&fmt=ahah

References

  1. Aricescu A. R., Assenberg R., Bill R. M., Busso D., Chang V. T., Davis S. J., Dubrovsky A., Gustafsson L., Hedfalk K. other authors 2006; Eukaryotic expression: developments for structural proteomics. Acta Crystallogr D Biol Crystallogr 62:1114–1124 [CrossRef]
    [Google Scholar]
  2. Bartelma G., Padmanabhan R. 2002; Expression, purification, and characterization of the RNA 5′-triphosphatase activity of dengue virus type 2 nonstructural protein 3. Virology 299:122–132 [CrossRef]
    [Google Scholar]
  3. Benarroch D., Egloff M. P., Mulard L., Guerreiro C., Romette J. L., Canard B. 2004; A structural basis for the inhibition of the NS5 dengue virus mRNA 2′-O-methyltransferase domain by ribavirin 5′-triphosphate. J Biol Chem 279:35638–35643 [CrossRef]
    [Google Scholar]
  4. Berrow N. S., Alderton D., Sainsbury S., Nettleship J., Assenberg R., Rahman N., Stuart D. I., Owens R. J. 2007; A versatile ligation-independent cloning method suitable for high-throughput expression screening applications. Nucleic Acids Res 35:e45 [CrossRef]
    [Google Scholar]
  5. Brunger A. T., Adams P. D., Clore G. M., DeLano W. L., Gros P., Grosse-Kunstleve R. W., Jiang J. S., Kuszewski J., Nilges M. other authors 1998; Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54:905–921
    [Google Scholar]
  6. Bujnicki J. M., Rychlewski L. 2001; Reassignment of specificities of two cap methyltransferase domains in the reovirus lambda 2 protein. Genome Biol 2:research0038
    [Google Scholar]
  7. Calero G., Wilson K. F., Ly T., Rios-Steiner J. L., Clardy J. C., Cerione R. A. 2002; Structural basis of m7GpppG binding to the nuclear cap-binding protein complex. Nat Struct Biol 9:912–917 [CrossRef]
    [Google Scholar]
  8. Chambers T. J., Hahn C. S., Galler R., Rice C. M. 1990; Flavivirus genome organization, expression, and replication. Annu Rev Microbiol 44:649–688 [CrossRef]
    [Google Scholar]
  9. Cong P., Shuman S. 1992; Methyltransferase and subunit association domains of vaccinia virus mRNA capping enzyme. J Biol Chem 267:16424–16429
    [Google Scholar]
  10. Egloff M. P., Benarroch D., Selisko B., Romette J. L., Canard B. 2002; An RNA cap (nucleoside-2′-O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization. EMBO J 21:2757–2768 [CrossRef]
    [Google Scholar]
  11. Fabrega C., Hausmann S., Shen V., Shuman S., Lima C. D. 2004; Structure and mechanism of mRNA cap (guanine-N7) methyltransferase. Mol Cell 13:77–89 [CrossRef]
    [Google Scholar]
  12. Fechter P., Brownlee G. G. 2005; Recognition of mRNA cap structures by viral and cellular proteins. J Gen Virol 86:1239–1249 [CrossRef]
    [Google Scholar]
  13. Filomatori C. V., Lodeiro M. F., Alvarez D. E., Samsa M. M., Pietrasanta L., Gamarnik A. V. 2006; A 5′ RNA element promotes dengue virus RNA synthesis on a circular genome. Genes Dev 20:2238–2249 [CrossRef]
    [Google Scholar]
  14. Gale M. Jr, Tan S. L., Katze M. G. 2000; Translational control of viral gene expression in eukaryotes. Microbiol Mol Biol Rev 64:239–280 [CrossRef]
    [Google Scholar]
  15. Gebauer F., Hentze M. W. 2004; Molecular mechanisms of translational control. Nat Rev Mol Cell Biol 5:827–835
    [Google Scholar]
  16. Gu M., Lima C. D. 2005; Processing the message: structural insights into capping and decapping mRNA. Curr Opin Struct Biol 15:99–106 [CrossRef]
    [Google Scholar]
  17. Hodel A. E., Gershon P. D., Shi X., Quiocho F. A. 1996; The 1.85 Å structure of vaccinia protein VP39: a bifunctional enzyme that participates in the modification of both mRNA ends. Cell 85:247–256 [CrossRef]
    [Google Scholar]
  18. Hodel A. E., Gershon P. D., Shi X., Wang S. M., Quiocho F. A. 1997; Specific protein recognition of an mRNA cap through its alkylated base. Nat Struct Biol 4:350–354 [CrossRef]
    [Google Scholar]
  19. Hodel A. E., Gershon P. D., Quiocho F. A. 1998; Structural basis for sequence-nonspecific recognition of 5′-capped mRNA by a cap-modifying enzyme. Mol Cell 1:443–447 [CrossRef]
    [Google Scholar]
  20. Kabsch W., Sander C. 1983; Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637 [CrossRef]
    [Google Scholar]
  21. Krissinel E., Henrick K. 2005; Detection of protein assemblies in crystals. In Computational Life Sciences pp 163–174 Edited by Berthold R. et al. Berlin Heidelberg: Springer-Verlag;
    [Google Scholar]
  22. Kuo M. D., Chin C., Hsu S. L., Shiao J. Y., Wang T. M., Lin J. H. 1996; Characterization of the NTPase activity of Japanese encephalitis virus NS3 protein. J Gen Virol 77:2077–2084 [CrossRef]
    [Google Scholar]
  23. Marcotrigiano J., Gingras A. C., Sonenberg N., Burley S. K. 1997; Cocrystal structure of the messenger RNA 5′ cap-binding protein (eIF4E) bound to 7-methyl-GDP. Cell 89:951–961 [CrossRef]
    [Google Scholar]
  24. Martin J. L., McMillan F. M. 2002; SAM (dependent) I AM: the S-adenosylmethionine-dependent methyltransferase fold. Curr Opin Struct Biol 12:783–793 [CrossRef]
    [Google Scholar]
  25. Mayo C. J., Diprose J. M., Walter T. S., Berry I. M., Wilson J., Owens R. J., Jones E. Y., Harlos K., Stuart D. I., Esnouf R. M. 2005; Benefits of automated crystallization plate tracking, imaging, and analysis. Structure 13:175–182 [CrossRef]
    [Google Scholar]
  26. Moure C. M., Bowman B. R., Gershon P. D., Quiocho F. A. 2006; Crystal structures of the vaccinia virus polyadenylate polymerase heterodimer: insights into ATP selectivity and processivity. Mol Cell 22:339–349 [CrossRef]
    [Google Scholar]
  27. Murshudov G. N., Vagin A. A., Dodson E. J. 1997; Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53:240–255 [CrossRef]
    [Google Scholar]
  28. Nettleship J. E., Walter T. S., Aplin R., Stammers D. K., Owens R. J. 2005; Sample preparation and mass-spectrometric characterization of crystal-derived protein samples. Acta Crystallogr D Biol Crystallogr 61:643–645 [CrossRef]
    [Google Scholar]
  29. Otwinowski Z., Minor W. 1997; Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276:307–326
    [Google Scholar]
  30. Parker R., Song H. 2004; The enzymes and control of eukaryotic mRNA turnover. Nat Struct Mol Biol 11:121–127 [CrossRef]
    [Google Scholar]
  31. Perrakis A., Morris R., Lamzin V. S. 1999; Automated protein model building combined with iterative structure refinement. Nat Struct Biol 6:458–463 [CrossRef]
    [Google Scholar]
  32. Ray D., Shah A., Tilgner M., Guo Y., Zhao Y., Dong H., Deas T. S., Zhou Y., Li H., Shi P. Y. 2006; West Nile virus 5′-cap structure is formed by sequential guanine N-7 and ribose 2'-O methylations by nonstructural protein 5. J Virol 80:8362–8370 [CrossRef]
    [Google Scholar]
  33. Reinisch K. M., Nibert M. L., Harrison S. C. 2000; Structure of the reovirus core at 3.6 Å resolution. Nature 404:960–967 [CrossRef]
    [Google Scholar]
  34. Schneider R. J., Mohr I. 2003; Translation initiation and viral tricks. Trends Biochem Sci 28:130–136 [CrossRef]
    [Google Scholar]
  35. Schubert H. L., Blumenthal R. M., Cheng X. 2003; Many paths to methyltransfer: a chronicle of convergence. Trends Biochem Sci 28:329–335 [CrossRef]
    [Google Scholar]
  36. Shatkin A. J. 1976; Capping of eucaryotic mRNAs. Cell 9:645–653 [CrossRef]
    [Google Scholar]
  37. Stuart D. I., Levine M., Muirhead H., Stammers D. K. 1979; Crystal structure of cat muscle pyruvate kinase at a resolution of 2.6 Å. J Mol Biol 134:109–142 [CrossRef]
    [Google Scholar]
  38. Walter T. S., Diprose J. M., Mayo C. J., Siebold C., Pickford M. G., Carter L., Sutton G. C., Berrow N. S., Brown J. other authors 2005; A procedure for setting up high-throughput nanolitre crystallization experiments. Crystallization workflow for initial screening, automated storage, imaging and optimization. Acta Crystallogr D Biol Crystallogr 61:651–657
    [Google Scholar]
  39. Walter T. S., Meier C., Assenberg R., Au K., Ren J., Verma A., Nettleship J. E., Owens R. J., Stuart D. I., Grimes J. M. 2006; Lysine methylation as a routine rescue strategy for protein crystallization. Structure 14:1617–1622 [CrossRef]
    [Google Scholar]
  40. Warrener P., Tamura J. K., Collett M. S. 1993; RNA-stimulated NTPase activity associated with yellow fever virus NS3 protein expressed in bacteria. J Virol 67:989–996
    [Google Scholar]
  41. Wengler G. 1993; The NS 3 nonstructural protein of flaviviruses contains an RNA triphosphatase activity. Virology 197:265–273 [CrossRef]
    [Google Scholar]
  42. Yang Z. R., Thomson R., McNeil P., Esnouf R. M. 2005; ronn: the bio-basis function neural network technique applied to the detection of natively disordered regions in proteins. Bioinformatics 21:3369–3376 [CrossRef]
    [Google Scholar]
  43. Yon C., Teramoto T., Mueller N., Phelan J., Ganesh V. K., Murthy K. H., Padmanabhan R. 2005; Modulation of the nucleoside triphosphatase/RNA helicase and 5′-RNA triphosphatase activities of Dengue virus type 2 nonstructural protein 3 (NS3) by interaction with NS5, the RNA-dependent RNA polymerase. J Biol Chem 280:27412–27419 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82757-0
Loading
/content/journal/jgv/10.1099/vir.0.82757-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error