1887

Abstract

Camelpox virus (CMLV) gene encodes a protein with sequence similarity to murine schlafen (m-slfn) proteins. , short and long members of the m-slfn family inhibited T-cell development, whereas , only short m-slfns caused arrest of fibroblast growth. CMLV 176 protein (v-slfn) is most closely related to short m-slfns; however, when expressed stably in mammalian cells, v-slfn did not inhibit cell growth. v-slfn is a predominantly cytoplasmic 57 kDa protein that is expressed throughout infection. Several other orthopoxviruses encode v-slfn proteins, but the gene is fragmented in all sequenced variola virus and vaccinia virus (VACV) strains. Consistent with this, all 16 VACV strains tested do not express a v-slfn detected by polyclonal serum raised against the CMLV protein. In the absence of a small animal model to study CMLV pathogenesis, the contribution of CMLV v-slfn to orthopoxvirus virulence was studied via its expression in an attenuated strain of VACV. Recombinant viruses expressing wild-type v-slfn or v-slfn tagged at its C terminus with a haemagglutinin (HA) epitope were less virulent than control viruses. However, a virus expressing v-slfn tagged with the HA epitope at its N terminus had similar virulence to controls, implying that the N terminus has an important function. A greater recruitment of lymphocytes into infected lung tissue was observed in the presence of wild-type v-slfn but, interestingly, these cells were less activated. Thus, v-slfn is an orthopoxvirus virulence factor that affects the host immune response to infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82748-0
2007-06-01
2019-12-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/6/1667.html?itemId=/content/journal/jgv/10.1099/vir.0.82748-0&mimeType=html&fmt=ahah

References

  1. Afonso, C. L., Tulman, E. R., Lu, Z., Oma, E., Kutish, G. F. & Rock, D. L. ( 1999; ). The genome of Melanoplus sanguinipes entomopoxvirus. J Virol 73, 533–552.
    [Google Scholar]
  2. Afonso, C. L., Tulman, E. R., Lu, Z., Zsak, L., Sandybaev, N. T., Kerembekova, U. Z., Zaitsev, V. L., Kutish, G. F. & Rock, D. L. ( 2002; ). The genome of camelpox virus. Virology 295, 1–9.[CrossRef]
    [Google Scholar]
  3. Alcami, A. & Smith, G. L. ( 1992; ). A soluble receptor for interleukin-1β encoded by vaccinia virus: a novel mechanism of virus modulation of the host response to infection. Cell 71, 153–167.[CrossRef]
    [Google Scholar]
  4. Alcami, A. & Smith, G. L. ( 1996; ). A mechanism for the inhibition of fever by a virus. Proc Natl Acad Sci U S A 93, 11029–11034.[CrossRef]
    [Google Scholar]
  5. Bawden, A. L., Glassberg, K. J., Diggans, J., Shaw, R., Farmerie, W. & Moyer, R. W. ( 2000; ). Complete genomic sequence of the Amsacta moorei entomopoxvirus: analysis and comparison with other poxviruses. Virology 274, 120–139.[CrossRef]
    [Google Scholar]
  6. Bennink, J. R., Yewdell, J. W., Smith, G. L. & Moss, B. ( 1986; ). Recognition of cloned influenza virus hemagglutinin gene products by cytotoxic T lymphocytes. J Virol 57, 786–791.
    [Google Scholar]
  7. Brady, G., Boggan, L., Bowie, A. & O'Neill, L. A. ( 2005; ). Schlafen-1 causes a cell cycle arrest by inhibiting induction of cyclin D1. J Biol Chem 280, 30723–30734.[CrossRef]
    [Google Scholar]
  8. Buller, R. M., Smith, G. L., Cremer, K., Notkins, A. L. & Moss, B. ( 1985; ). Decreased virulence of recombinant vaccinia virus expression vectors is associated with a thymidine kinase-negative phenotype. Nature 317, 813–815.[CrossRef]
    [Google Scholar]
  9. Chakrabarti, S., Brechling, K. & Moss, B. ( 1985; ). Vaccinia virus expression vector: coexpression of β-galactosidase provides visual screening of recombinant virus plaques. Mol Cell Biol 5, 3403–3409.
    [Google Scholar]
  10. Clark, R. H., Kenyon, J. C., Bartlett, N. W., Tscharke, D. C. & Smith, G. L. ( 2006; ). Deletion of gene A41L enhances vaccinia virus immunogenicity and vaccine efficacy. J Gen Virol 87, 29–38.[CrossRef]
    [Google Scholar]
  11. Davison, A. J. & Moss, B. ( 1990; ). New vaccinia virus recombination plasmids incorporating a synthetic late promoter for high level expression of foreign proteins. Nucleic Acids Res 18, 4285–4286.[CrossRef]
    [Google Scholar]
  12. Eskra, L., Mathison, A. & Splitter, G. ( 2003; ). Microarray analysis of mRNA levels from RAW264.7 macrophages infected with Brucella abortus. Infect Immun 71, 1125–1133.[CrossRef]
    [Google Scholar]
  13. Frickey, T. & Lupas, A. N. ( 2004; ). Phylogenetic analysis of AAA proteins. J Struct Biol 146, 2–10.[CrossRef]
    [Google Scholar]
  14. Geserick, P., Kaiser, F., Klemm, U., Kaufmann, S. H. & Zerrahn, J. ( 2004; ). Modulation of T cell development and activation by novel members of the Schlafen (slfn) gene family harbouring an RNA helicase-like motif. Int Immunol 16, 1535–1548.[CrossRef]
    [Google Scholar]
  15. Gubser, C. & Smith, G. L. ( 2002; ). The sequence of camelpox virus shows it is most closely related to variola virus, the cause of smallpox. J Gen Virol 83, 855–872.
    [Google Scholar]
  16. Law, M., Hollinshead, M., Lee, H. J. & Smith, G. L. ( 2004; ). Yaba-like disease virus protein Y144R, a member of the complement control protein family, is present on enveloped virions that are associated with virus-induced actin tails. J Gen Virol 85, 1279–1290.[CrossRef]
    [Google Scholar]
  17. Liu, A., Qin, J. C., Rankin, C., Hardin, S. E. & Weaver, R. F. ( 1986; ). Nucleotide sequence of a portion of the Autographa californica nuclear polyhedrosis virus genome containing the EcoRI site-rich region (hr5) and an open reading frame just 5′ of the p10 gene. J Gen Virol 67, 2565–2570.[CrossRef]
    [Google Scholar]
  18. Lupas, A. N. & Martin, J. ( 2002; ). AAA proteins. Curr Opin Struct Biol 12, 746–753.[CrossRef]
    [Google Scholar]
  19. Moss, B. ( 2001; ). Poxviridae: the viruses and their replication. In Fields Virology, 4th edn, pp. 2849–2883. Edited by D. M. Knipe & P. M. Howley. Philadelphia, PA: Lippincott Williams & Wilkins.
  20. Pires de Miranda, M., Reading, P. C., Tscharke, D. C., Murphy, B. J. & Smith, G. L. ( 2003; ). The vaccinia virus kelch-like protein C2L affects calcium-independent adhesion to the extracellular matrix and inflammation in a murine intradermal model. J Gen Virol 84, 2459–2471.[CrossRef]
    [Google Scholar]
  21. Reading, P. C. & Smith, G. L. ( 2003; ). A kinetic analysis of immune mediators in the lungs of mice infected with vaccinia virus and comparison with intradermal infection. J Gen Virol 84, 1973–1983.[CrossRef]
    [Google Scholar]
  22. Schmelz, M., Sodeik, B., Ericsson, M., Wolffe, E. J., Shida, H., Hiller, G. & Griffiths, G. ( 1994; ). Assembly of vaccinia virus: the second wrapping cisterna is derived from the trans Golgi network. J Virol 68, 130–147.
    [Google Scholar]
  23. Schwarz, D. A., Katayama, C. D. & Hedrick, S. M. ( 1998; ). Schlafen, a new family of growth regulatory genes that affect thymocyte development. Immunity 9, 657–668.[CrossRef]
    [Google Scholar]
  24. Smith, G. L., Levin, J. Z., Palese, P. & Moss, B. ( 1987; ). Synthesis and cellular location of the ten influenza polypeptides individually expressed by recombinant vaccinia viruses. Virology 160, 336–345.[CrossRef]
    [Google Scholar]
  25. Spriggs, M. K., Hruby, D. E., Maliszewski, C. R., Pickup, D. J., Sims, J. E., Buller, R. M. & VanSlyke, J. ( 1992; ). Vaccinia and cowpox viruses encode a novel secreted interleukin-1-binding protein. Cell 71, 145–152.[CrossRef]
    [Google Scholar]
  26. Staib, C., Kisling, S., Erfle, V. & Sutter, G. ( 2005; ). Inactivation of the viral interleukin 1β receptor improves CD8+ T-cell memory responses elicited upon immunization with modified vaccinia virus Ankara. J Gen Virol 86, 1997–2006.[CrossRef]
    [Google Scholar]
  27. Symons, J. A., Tscharke, D. C., Price, N. & Smith, G. L. ( 2002; ). A study of the vaccinia virus interferon-γ receptor and its contribution to virus virulence. J Gen Virol 83, 1953–1964.
    [Google Scholar]
  28. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  29. Tscharke, D. C. & Smith, G. L. ( 1999; ). A model for vaccinia virus pathogenesis and immunity based on intradermal injection of mouse ear pinnae. J Gen Virol 80, 2751–2755.
    [Google Scholar]
  30. Tscharke, D. C., Reading, P. C. & Smith, G. L. ( 2002; ). Dermal infection with vaccinia virus reveals roles for virus proteins not seen using other inoculation routes. J Gen Virol 83, 1977–1986.
    [Google Scholar]
  31. Tulman, E. R., Delhon, G., Afonso, C. L., Lu, Z., Zsak, L., Sandybaev, N. T., Kerembekova, U. Z., Zaitsev, V. L., Kutish, G. F. & Rock, D. L. ( 2006; ). Genome of horsepox virus. J Virol 80, 9244–9258.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82748-0
Loading
/content/journal/jgv/10.1099/vir.0.82748-0
Loading

Data & Media loading...

Supplements

vol. , part 6, pp. 1667–1676.

[Single PDF file](243 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error