1887

Abstract

Since ‘constitutive activation’ of STAT1 was first described in Epstein–Barr virus (EBV)-immortalized lymphoblastoid cell lines (LCLs), there has been controversy regarding the molecular identity of the STAT1 DNA-binding complex found in these cells. The post-translational modifications of STAT1 in LCLs have been analysed and an LMP1-induced STAT1 DNA-binding complex, different from that generated by alpha interferon (IFN) stimulation and not involving tyrosine phosphorylation, is demonstrated. STAT1 is serine-phosphorylated downstream of PI3K and MEK in LCLs and this modification restricts IFN-stimulated STAT1–DNA binding. These data suggest that EBV induces a distinct form of DNA-bound STAT1 in virus-infected cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82741-0
2007-07-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/7/1876.html?itemId=/content/journal/jgv/10.1099/vir.0.82741-0&mimeType=html&fmt=ahah

References

  1. Beadling C., Ng J., Babbage J. W., Cantrell D. A. 1996; Interleukin-2 activation of STAT5 requires the convergent action of tyrosine kinases and a serine/threonine kinase pathway distinct from the Raf1/ERK2 MAP kinase pathway. EMBO J 15:1902–1913
    [Google Scholar]
  2. Ben-Bassat H., Goldblum N., Mitrani S., Goldblum T., Yoffey J. M., Cohen M. M., Bentwich Z., Ramot B., Klein E., Klein G. 1977; Establishment in continuous culture of a new type of lymphocyte from a ‘Burkitt like’ malignant lymphoma (line D.G.-75). Int J Cancer 19:27–33 [CrossRef]
    [Google Scholar]
  3. Bowman T., Garcia R., Turkson J., Jove R. 2000; STATs in oncogenesis. Oncogene 19:2474–2488 [CrossRef]
    [Google Scholar]
  4. Brennan P., O'Neill L. A. 1996; 2-Mercaptoethanol restores the ability of nuclear factor κ B (NF κ B) to bind DNA in nuclear extracts from interleukin 1-treated cells incubated with pyrollidine dithiocarbamate (PDTC). Evidence for oxidation of glutathione in the mechanism of inhibition of NF κ B by PDTC. Biochem J 320:975–981
    [Google Scholar]
  5. Breslin E. M., White P. C., Shore A. M., Clement M., Brennan P. 2005; LY294002 and rapamycin co-operate to inhibit T-cell proliferation. Br J Pharmacol 144:791–800 [CrossRef]
    [Google Scholar]
  6. Chatterjee-Kishore M., Wright K. L., Ting J. P., Stark G. R. 2000; How Stat1 mediates constitutive gene expression: a complex of unphosphorylated Stat1 and IRF1 supports transcription of the LMP2 gene. EMBO J 19:4111–4122 [CrossRef]
    [Google Scholar]
  7. Chung J., Uchida E., Grammer T. C., Blenis J. 1997; STAT3 serine phosphorylation by ERK-dependent and -independent pathways negatively modulates its tyrosine phosphorylation. Mol Cell Biol 17:6508–6516
    [Google Scholar]
  8. Darnell J. E. Jr, Kerr I. M., Stark G. R. 1994; Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264:1415–1421 [CrossRef]
    [Google Scholar]
  9. Decker T., Kovarik P. 2000; Serine phosphorylation of STATs. Oncogene 19:2628–2637 [CrossRef]
    [Google Scholar]
  10. Dupuis S., Dargemont C., Fieschi C., Thomassin N., Rosenzweig S., Harris J., Holland S. M., Schreiber R. D., Casanova J. L. 2001; Impairment of mycobacterial but not viral immunity by a germline human STAT1 mutation. Science 293:300–303 [CrossRef]
    [Google Scholar]
  11. Eliopoulos A. G., Young L. S. 2001; LMP1 structure and signal transduction. Semin Cancer Biol 11:435–444 [CrossRef]
    [Google Scholar]
  12. Fagard R., Mouas H., Dusanter-Fourt I., Devillers C., Bissieres P., Martin A., Lenoir G., VanTan H., Feuillard J., Raphael M. 2002; Resistance to fludarabine-induced apoptosis in Epstein-Barr virus infected B cells. Oncogene 21:4473–4480 [CrossRef]
    [Google Scholar]
  13. Floettmann J. E., Ward K., Rickinson A. B., Rowe M. 1996; Cytostatic effect of Epstein-Barr virus latent membrane protein-1 analyzed using tetracycline-regulated expression in B cell lines. Virology 223:29–40 [CrossRef]
    [Google Scholar]
  14. Frank D. A., Mahajan S., Ritz J. 1997; B lymphocytes from patients with chronic lymphocytic leukemia contain signal transducer and activator of transcription (STAT) 1 and STAT3 constitutively phosphorylated on serine residues. J Clin Invest 100:3140–3148 [CrossRef]
    [Google Scholar]
  15. Gires O., Zimber-Strobl U., Gonnella R., Ueffing M., Marschall G., Zeidler R., Pich D., Hammerschmidt W. 1997; Latent membrane protein 1 of Epstein-Barr virus mimics a constitutively active receptor molecule. EMBO J 16:6131–6140 [CrossRef]
    [Google Scholar]
  16. Goh K. C., Haque S. J., Williams B. R. 1999; p38 MAP kinase is required for STAT1 serine phosphorylation and transcriptional activation induced by interferons. EMBO J 18:5601–5608 [CrossRef]
    [Google Scholar]
  17. Hori T., Uchiyama T., Tsudo M., Umadome H., Ohno H., Fukuhara S., Kita K., Uchino H. 1987; Establishment of an interleukin 2-dependent human T cell line from a patient with T cell chronic lymphocytic leukemia who is not infected with human T cell leukemia/lymphoma virus. Blood 70:1069–1072
    [Google Scholar]
  18. Jain N., Zhang T., Fong S. L., Lim C. P., Cao X. 1998; Repression of Stat3 activity by activation of mitogen-activated protein kinase (MAPK). Oncogene 17:3157–3167 [CrossRef]
    [Google Scholar]
  19. Kaye K. M., Izumi K. M., Kieff E. 1993; Epstein-Barr virus latent membrane protein 1 is essential for B-lymphocyte growth transformation. Proc Natl Acad Sci U S A 90:9150–9154 [CrossRef]
    [Google Scholar]
  20. Kilger E., Kieser A., Baumann M., Hammerschmidt W. 1998; Epstein-Barr virus-mediated B-cell proliferation is dependent upon latent membrane protein 1, which simulates an activated CD40 receptor. EMBO J 17:1700–1709 [CrossRef]
    [Google Scholar]
  21. Komyod W., Bauer U. M., Heinrich P. C., Haan S., Behrmann I. 2005; Are STATS arginine-methylated?. J Biol Chem 280:21700–21705 [CrossRef]
    [Google Scholar]
  22. Kovacic B., Stoiber D., Moriggl R., Weisz E., Ott R. G., Kreibich R., Levy D. E., Beug H., Freissmuth M., Sexl V. 2006; STAT1 acts as a tumor promoter for leukemia development. Cancer Cell 10:77–87 [CrossRef]
    [Google Scholar]
  23. Kramer O. H., Baus D., Knauer S. K., Stein S., Jager E., Stauber R. H., Grez M., Pfitzner E., Heinzel T. 2006; Acetylation of Stat1 modulates NF- κ B activity. Genes Dev 20:473–485 [CrossRef]
    [Google Scholar]
  24. Kumar A., Commane M., Flickinger T. W., Horvath C. M., Stark G. R. 1997; Defective TNF- α -induced apoptosis in STAT1-null cells due to low constitutive levels of caspases. Science 278:1630–1632 [CrossRef]
    [Google Scholar]
  25. Lee C. K., Gimeno R., Levy D. E. 1999; Differential regulation of constitutive major histocompatibility complex class I expression in T and B lymphocytes. J Exp Med 190:1451–1464 [CrossRef]
    [Google Scholar]
  26. Meissner T., Krause E., Lodige I., Vinkemeier U. 2004; Arginine methylation of STAT1: a reassessment. Cell 119:587–589
    [Google Scholar]
  27. Mowen K. A., Tang J., Zhu W., Schurter B. T., Shuai K., Herschman H. R., David M. 2001; Arginine methylation of STAT1 modulates IFN α / β -induced transcription. Cell 104:731–741 [CrossRef]
    [Google Scholar]
  28. Najjar I., Baran-Marszak F., Le Clorennec C., Laguillier C., Schischmanoff O., Youlyouz-Marfak I., Schlee M., Bornkamm G. W., Raphael M. other authors 2005; Latent membrane protein 1 regulates STAT1 through NF- κ B-dependent interferon secretion in Epstein-Barr virus-immortalized B cells. J Virol 79:4936–4943 [CrossRef]
    [Google Scholar]
  29. Nepomuceno R. R., Snow A. L., Robert Beatty P., Krams S. M., Martinez O. M. 2002; Constitutive activation of Jak/STAT proteins in Epstein-Barr virus-infected B-cell lines from patients with posttransplant lymphoproliferative disorder. Transplantation 74:396–402 [CrossRef]
    [Google Scholar]
  30. Nguyen H., Ramana C. V., Bayes J., Stark G. R. 2001; Roles of phosphatidylinositol 3-kinase in interferon-gamma-dependent phosphorylation of STAT1 on serine 727 and activation of gene expression. J Biol Chem 276:33361–33368 [CrossRef]
    [Google Scholar]
  31. Rahimi A. A., Gee K., Mishra S., Lim W., Kumar A. 2005; STAT-1 mediates the stimulatory effect of IL-10 on CD14 expression in human monocytic cells. J Immunol 174:7823–7832 [CrossRef]
    [Google Scholar]
  32. Richardson C., Fielding C., Rowe M., Brennan P. 2003; Epstein-Barr virus regulates STAT1 through latent membrane protein 1. J Virol 77:4439–4443 [CrossRef]
    [Google Scholar]
  33. Rickinson A. B., Kieff E. 1996; Epstein-Barr virus. In Fields Virology , 3rd edn. vol 2 pp 2397–2446 Edited by Knipe D. M., Fields B. N., Howley P. M. Philadelphia, PA: Lippincott–Raven;
    [Google Scholar]
  34. Rickinson A. B., Moss D. J. 1997; Human cytotoxic T lymphocyte responses to Epstein-Barr virus infection. Annu Rev Immunol 15:405–431 [CrossRef]
    [Google Scholar]
  35. Rowe M., Jones M. 2001; Detection of EBV latent proteins by Western blotting. Methods Mol Biol 174:229–242
    [Google Scholar]
  36. Rowe M., Rooney C. M., Edwards C. F., Lenoir G. M., Rickinson A. B. 1986; Epstein-Barr virus status and tumour cell phenotype in sporadic Burkitt's lymphoma. Int J Cancer 37:367–373 [CrossRef]
    [Google Scholar]
  37. Rowe M., Rowe D. T., Gregory C. D., Young L. S., Farrell P. J., Rupani H., Rickinson A. B. 1987; Differences in B cell growth phenotype reflect novel patterns of Epstein-Barr virus latent gene expression in Burkitt's lymphoma cells. EMBO J 6:2743–2751
    [Google Scholar]
  38. Rowe M., Khanna R., Jacob C. A., Argaet V., Kelly A., Powis S., Belich M., Croom-Carter D., Lee S., Burrows S. R. 1995; Restoration of endogenous antigen processing in Burkitt's lymphoma cells by Epstein-Barr virus latent membrane protein-1: coordinate up-regulation of peptide transporters and HLA-class I antigen expression. Eur J Immunol 25:1374–1384 [CrossRef]
    [Google Scholar]
  39. Sadowski H. B., Shuai K., Darnell J. E. Jr, Gilman M. Z. 1993; A common nuclear signal transduction pathway activated by growth factor and cytokine receptors. Science 261:1739–1744 [CrossRef]
    [Google Scholar]
  40. Sengupta T. K., Talbot E. S., Scherle P. A., Ivashkiv L. B. 1998; Rapid inhibition of interleukin-6 signaling and Stat3 activation mediated by mitogen-activated protein kinases. Proc Natl Acad Sci U S A 95:11107–11112 [CrossRef]
    [Google Scholar]
  41. Timofeeva O. A., Plisov S., Evseev A. A., Peng S., Jose-Kampfner M., Lovvorn H. N., Dome J. S., Perantoni A. O. 2006; Serine-phosphorylated STAT1 is a pro-survival factor in Wilms' tumor pathogenesis. Oncogene 25:7555–7564 [CrossRef]
    [Google Scholar]
  42. Wang R., Cherukuri P., Luo J. 2005; Activation of Stat3 sequence-specific DNA binding and transcription by p300/CREB-binding protein-mediated acetylation. J Biol Chem 280:11528–11534 [CrossRef]
    [Google Scholar]
  43. Weber-Nordt R. M., Egen C., Wehinger J., Ludwig W., Gouilleux-Gruart V., Mertelsmann R., Finke J. 1996; Constitutive activation of STAT proteins in primary lymphoid and myeloid leukemia cells and in Epstein-Barr virus (EBV)-related lymphoma cell lines. Blood 88:809–816
    [Google Scholar]
  44. Yang J., Chatterjee-Kishore M., Staugaitis S. M., Nguyen H., Schlessinger K., Levy D. E., Stark G. R. 2005; Novel roles of unphosphorylated STAT3 in oncogenesis and transcriptional regulation. Cancer Res 65:939–947
    [Google Scholar]
  45. Yuan Z. L., Guan Y. J., Chatterjee D., Chin Y. E. 2005; Stat3 dimerization regulated by reversible acetylation of a single lysine residue. Science 307:269–273 [CrossRef]
    [Google Scholar]
  46. Zhang L., Hong K., Zhang J., Pagano J. S. 2004; Multiple signal transducers and activators of transcription are induced by EBV LMP-1. Virology 323:141–152 [CrossRef]
    [Google Scholar]
  47. Zhong Z., Wen Z., Darnell J. E., Jr. 1994; Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science 264:95–98 [CrossRef]
    [Google Scholar]
  48. Zykova T. A., Zhang Y., Zhu F., Bode A. M., Dong Z. 2005; The signal transduction networks required for phosphorylation of STAT1 at Ser727 in mouse epidermal JB6 cells in the UVB response and inhibitory mechanisms of tea polyphenols. Carcinogenesis 26:331–342
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82741-0
Loading
/content/journal/jgv/10.1099/vir.0.82741-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error