1887

Abstract

Four RNAs from a new plant-pathogenic virus, which we have tentatively named European mountain ash ringspot-associated virus (EMARAV), were identified and sequenced completely. All four viral RNAs could be detected in previous double-stranded RNA preparations. RNA 1 (7040 nt) encodes a protein with similarity to the RNA-dependent RNA polymerase of different members of the , a family containing five genera with viruses infecting invertebrates, vertebrates and plants. RNA 2 (2335 nt) encodes a 75 kDa protein containing a conserved motif of the glycoprotein precursor of the genus . Immunological detection indicated the presence of proteins with the expected size of the precursor and one of its processing products. The amino acid sequence of protein p3 (35 kDa) encoded by RNA 3 shows similarities to a putative nucleocapsid protein of two still unclassified plant viruses. The fourth viral RNA encodes a 27 kDa protein that has no significant homology to any known protein. As is typical for members of the family , the 5′ and 3′ ends of all viral RNAs are complementary, which allows the RNA to form a panhandle structure. Comparison of these sequences demonstrates a conserved terminal part of 13 nt, similar to that of the bunyaviral genus . Despite the high agreement of the EMARAV genome with several characteristics of the family , there are a few features that make it difficult to allocate the virus to this group. It is therefore more likely that this plant pathogen belongs to a novel virus genus.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82715-0
2007-04-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/4/1337.html?itemId=/content/journal/jgv/10.1099/vir.0.82715-0&mimeType=html&fmt=ahah

References

  1. Andersson, A. M., Melin, L., Persson, R., Raschperger, E., Wikström, L. & Pettersson, R. F. ( 1997; ). Processing and membrane topology of the spike proteins G1 and G2 of Uukuniemi virus. J Virol 71, 218–225.
    [Google Scholar]
  2. Aquino, V. H., Moreli, M. L. & Moraes Figueiredo, L. T. ( 2003; ). Analysis of Oropouche virus L protein amino acid sequence showed the presence of an additional conserved region that could harbour an important role for the polymerase activity. Arch Virol 148, 19–28.[CrossRef]
    [Google Scholar]
  3. Barr, J. N. & Wertz, G. W. ( 2004; ). Bunyamwera bunyavirus RNA synthesis requires cooperation of 3′- and 5′-terminal sequences. J Virol 78, 1129–1138.[CrossRef]
    [Google Scholar]
  4. Barr, J. N., Elliott, R. M., Dunn, E. F. & Wertz, G. W. ( 2003; ). Segment-specific terminal sequences of Bunyamwera bunyavirus regulate genome replication. Virology 311, 326–338.[CrossRef]
    [Google Scholar]
  5. Benthack, W., Mielke, N., Büttner, C. & Mühlbach, H.-P. ( 2005; ). Double-stranded RNA pattern and partial sequence data indicate plant virus infection associated with ringspot disease of European mountain ash (Sorbus aucuparia L.). Arch Virol 150, 37–52.[CrossRef]
    [Google Scholar]
  6. Boom, R., Sol, C. J. A., Salimans, M. M. M., Jansen, C. L., Wertheim-van Dillen, P. M. E. & van der Noordaa, J. ( 1990; ). Rapid and simply method for purification of nucleic acids. J Clin Microbiol 28, 495–503.
    [Google Scholar]
  7. Brigneti, G., Voinnet, O., Li, W. X., Ji, L. H., Ding, S. W. & Baulcombe, D. C. ( 1998; ). Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. EMBO J 17, 6739–6746.[CrossRef]
    [Google Scholar]
  8. Bucher, E., Sijen, T., de Haan, P., Goldbach, R. & Prins, M. ( 2003; ). Negative-strand tospoviruses and tenuiviruses carry a gene for a suppressor of gene silencing at analogous genomic positions. J Virol 77, 1329–1336.[CrossRef]
    [Google Scholar]
  9. Cooper, J. I. ( 1979; ). Virus Diseases of Trees and Shrubs, 2nd edn. London: Chapman & Hall.
  10. Dodds, J. A., Morris, T. J. & Jordan, R. L. ( 1984; ). Plant viral double-stranded RNA. Annu Rev Phytopathol 22, 151–168.[CrossRef]
    [Google Scholar]
  11. Duijsings, D., Kormelink, R. & Goldbach, R. ( 2001; ). In vivo analysis of the TSWV cap-snatching mechanism: single base complementarity and primer length requirements. EMBO J 20, 2545–2552.[CrossRef]
    [Google Scholar]
  12. Ebrahim-Nesbat, F. & Izadpanah, K. ( 1992; ). Viruslike particles associated with ringfleck mosaic of mountain ash and a mosaic disease of raspberry in the Bavarian Forest. Eur J Forest Pathol 22, 1–10.[CrossRef]
    [Google Scholar]
  13. Estabrook, E. M., Suyenaga, K., Tsai, J. H. & Falk, B. W. ( 1996; ). Maize stripe tenuivirus RNA2 transcripts in plant and insect analysis of pvc2, a protein similar to the phlebovirus virion glycoproteins. Virus Genes 12, 239–247.
    [Google Scholar]
  14. Falk, B. W. & Tsai, J. H. ( 1998; ). Biology and molecular biology of viruses in the genus Tenuivirus. Annu Rev Phytopathol 36, 139–163.[CrossRef]
    [Google Scholar]
  15. Flick, R., Elgh, F., Hobom, G. & Pettersson, R. F. ( 2002; ). Mutational analysis of the Uukuniemi virus (Bunyaviridae family) promoter reveals two elements of functional importance. J Virol 76, 10849–10860.[CrossRef]
    [Google Scholar]
  16. Fodor, E., Pritlove, D. C. & Brownlee, G. G. ( 1994; ). The influenza virus panhandle is involved in the initiation of transcription. J Virol 68, 4092–4096.
    [Google Scholar]
  17. Fodor, E., Pritlove, D. C. & Brownlee, G. G. ( 1995; ). Characterization of the RNA-fork model of virion RNA in the initiation of transcription in influenza A virus. J Virol 69, 4012–4019.
    [Google Scholar]
  18. Führling, M. & Büttner, C. ( 1995; ). Transmission experiments of viruses to woody seedlings (Quercus robur L. and Sorbus aucuparia L.) by grafting and mechanical inoculation. Eur J Forest Pathol 25, 129–135.[CrossRef]
    [Google Scholar]
  19. Gavrilovskaya, I. N., Shepley, M., Shaw, R., Ginsberg, M. H. & Mackow, E. R. ( 1998; ). β 3 integrins mediate the cellular entry of Hantavirus that cause respiratory failure. Proc Natl Acad Sci U S A 95, 7074–7079.[CrossRef]
    [Google Scholar]
  20. Germi, R., Crance, J. M., Garin, D., Guimet, J., Lortat-Jacob, H., Ruigrok, R. W., Zarski, J. P. & Drouet, E. ( 2002; ). Cellular glycosaminoglycans and low density lipoprotein receptor are involved in hepatitis C virus adsorption. J Med Virol 68, 206–215.[CrossRef]
    [Google Scholar]
  21. Hase, T., Summers, P. L. & Eckels, K. H. ( 1989; ). Flavivirus entry into cultured mosquito cells and human peripheral blood monocytes. Arch Virol 104, 129–143.[CrossRef]
    [Google Scholar]
  22. Hellendoorn, K., Verlaan, P. W. & Pleij, C. W. ( 1997; ). A functional role for the conserved protonatable hairpins in the 5′ untranslated region of turnip yellow mosaic virus RNA. J Virol 71, 8774–8779.
    [Google Scholar]
  23. Heukeshoven, J. & Dernick, R. ( 1988; ). Improved silver stain procedure for staining in phastsystem development unit; staining of sodium dodecylsulfate gels. Electrophoresis 9, 28–32.[CrossRef]
    [Google Scholar]
  24. Ito, T. & Lai, M. M. ( 1997; ). Determination of the secondary structure of and cellular protein binding to the 3′-untranslated region of the hepatitis C virus RNA genome. J Virol 71, 8698–8706.
    [Google Scholar]
  25. Jameson, B. A. & Wolf, H. ( 1988; ). The antigenic index: a novel algorithm for predicting antigenic determinants. Comput Appl Biosci 4, 181–186.
    [Google Scholar]
  26. Jelkmann, W., Kunze, L., Vetten, H.-J. & Lesemann, D.-E. ( 1992; ). cDNA cloning of dsRNA associated with apple stem pitting disease and evidence for the relationship of the virus-like agents associated with apple stem pitting and pear vein yellows. Acta Hortic 309, 55–62.
    [Google Scholar]
  27. Kasschau, K. D. & Carrington, J. C. ( 1998; ). A counter defensive strategy of plant viruses: suppressor of posttranscriptional gene silencing. Cell 95, 461–470.[CrossRef]
    [Google Scholar]
  28. Kegler, H. ( 1960; ). Das Ringfleckenmosaik der Eberesche (Sorbus aucuparia L.). Phytopathol Z 37, 214–216. (in German).[CrossRef]
    [Google Scholar]
  29. Kellmann, J.-W., Liebisch, P., Schmitz, K.-P. & Piechulla, B. ( 2001; ). Visual representation by atomic force microscopy (AFM) of tomato spotted wilt virus ribonucleoproteins. Biol Chem 382, 1559–1562.
    [Google Scholar]
  30. Koev, G., Liu, S., Beckett, R. & Miller, W. A. ( 2002; ). The 3′-terminal structure required for replication of barley yellow dwarf virus RNA contains an embedded 3′ end. Virology 292, 114–126.[CrossRef]
    [Google Scholar]
  31. Kohl, A., Lowen, A. C., Leonard, V. H. J. & Elliott, R. M. ( 2006; ). Genetic elements regulating packaging of the Bunyamwera orthobunyavirus genome. J Gen Virol 87, 177–187.[CrossRef]
    [Google Scholar]
  32. König, R. ( 1997; ). Magnetic bead technology aids sequence determinations for the 3′ and 5′ ends of viral RNAs. Biotechniques 23, 102–104.
    [Google Scholar]
  33. Koonin, E. V., Mushegian, A. R., Ryabov, E. V. & Dolja, V. V. ( 1991; ). Diverse groups of plant RNA and DNA viruses share related movement proteins that may possess chaperone-like activity. J Gen Virol 72, 2895–2903.[CrossRef]
    [Google Scholar]
  34. Kumar, P. L., Duncan, G. H., Roberts, I. M., Jones, A. T. & Reddy, D. V. R. ( 2002; ). Cytopathology of Pigeonpea sterility mosaic virus in pigeonpea and Nicotiana benthamiana: similarities with those of eriophyid mite-borne agents of undefined aetiology. Ann Appl Biol 140, 87–96.[CrossRef]
    [Google Scholar]
  35. Kumar, P. L., Jones, A. T. & Reddy, D. V. R. ( 2003; ). A novel mite-transmitted virus with a divided RNA genome closely associated with pigeonpea sterility mosaic disease. Phytopathology 93, 71–81.[CrossRef]
    [Google Scholar]
  36. Li, M. L., Rao, P. & Krug, R. M. ( 2001; ). The active sites of the influenza cap-dependent endonuclease are on different polymerase subunits. EMBO J 20, 2078–2086.[CrossRef]
    [Google Scholar]
  37. Liu, D. Y., Tesh, R. B., Travassos da Rosa, A. P. A., Peters, C. J., Yang, Z., Guzman, H. & Xiao, S. Y. ( 2003; ). Phylogenetic relationships among members of the genus Phlebovirus (Bunyaviridae) based on partial M segment sequence analyses. J Gen Virol 84, 465–473.[CrossRef]
    [Google Scholar]
  38. Lucas, W. J. ( 2006; ). Plant viral movement proteins: agents for cell-to-cell trafficking of viral genomes. Virology 344, 169–184.[CrossRef]
    [Google Scholar]
  39. Melcher, U. ( 1990; ). Similarities between putative transport proteins of plant viruses. J Gen Virol 71, 1009–1018.[CrossRef]
    [Google Scholar]
  40. Melcher, U. ( 2000; ). The ‘30K’ superfamily of viral movement proteins. J Gen Virol 81, 257–266.
    [Google Scholar]
  41. Osborne, J. C. & Elliott, R. M. ( 2000; ). RNA binding properties of bunyamwera virus nucleocapsid protein and selective binding to an element in the 5′ terminus of the negative-sense S segment. J Virol 74, 9946–9952.[CrossRef]
    [Google Scholar]
  42. Pfeffer, S., Dunoyer, P., Heim, F., Richards, K. E., Jonard, G. & Ziegler-Graff, V. ( 2002; ). P0 of beet western yellows virus in a suppressor of posttranscriptional gene silencing. J Virol 76, 6815–6824.[CrossRef]
    [Google Scholar]
  43. Polk, Z. & Zieglerov, J. ( 1996; ). Towards ringspots and variegation in mountain ash leaves. Z Pflanzenkr Pflanzenschutz 103, 432–435.
    [Google Scholar]
  44. Polk, Z., Prochzkov, Z. & Braniaov, H. ( 1990; ). Recent findings of viruses of forest trees on the territory of the Czech Republic. Arch Phytopathol Pflanzenschutz 26, 389–393.[CrossRef]
    [Google Scholar]
  45. Prehaud, C., Lopez, N., Blok, M. J., Obry, V. & Bouloy, M. ( 1997; ). Analysis of the 3′ terminal sequence recognized by the Rift valley fever virus transcription complex in its ambisense S segment. Virology 227, 189–197.[CrossRef]
    [Google Scholar]
  46. Qi, Z. T., Kalkeri, G., Hanible, J., Prabhu, R., Bastian, F., Garry, R. F. & Dash, S. ( 2003; ). Stem-loop structures II–IV of the 5′ untranslated sequences are required for the expression of the full-length Hepatitis C virus genome. Arch Virol 148, 449–467.[CrossRef]
    [Google Scholar]
  47. Rajcani, J. & Vojvodova, A. ( 1998; ). The role of herpes simplex virus glycoproteins in the virus replication cycle. Acta Virol 42, 103–118.
    [Google Scholar]
  48. Roggero, P., Ciuffo, M., Vaira, A. M. & Milne, R. G. ( 1998; ). Rapid purification of tospovirus nucleocapsids for antibody production and RNA analysis. In Recent Progress in Tospovirus and Thrips Research, pp. 25–28. Edited by D. Peters & R. Goldbach. Wageningen, The Netherlands: Wageningen University.
  49. Sanchez, A. J., Vincent, M. J. & Nichol, S. T. ( 2002; ). Characterization of the glycoproteins of Crimean-Congo hemorrhagic fever virus. J Virol 76, 7263–7275.[CrossRef]
    [Google Scholar]
  50. Santa Cruz, S. ( 1999; ). Perspective: phloem transport of viruses and macromolecules – what goes in must come out. Trends Microbiol 7, 237–241.[CrossRef]
    [Google Scholar]
  51. Satyanarayana, T., Gowda, S., Ayllon, M. A., Albiach-Marti, M. R. & Dawson, W. O. ( 2002; ). Mutational analysis of the replication signals in the 3′-nontranslated region of Citrus tristeza virus. Virology 300, 140–152.[CrossRef]
    [Google Scholar]
  52. Schmaljohn, C. S. & Hooper, J. W. ( 2001; ). Bunyaviridae: the viruses and their replication. In Fields Virology, 4th edn, vol. 2, pp. 1581–1602. Edited by D. M. Knipe & P. M. Howley. Philadelphia, PA: Lippincott Williams & Wilkins.
  53. Seron, K. & Haenni, A. L. ( 1996; ). Vascular movement of plant viruses. Mol Plant Microbe Interact 9, 435–442.[CrossRef]
    [Google Scholar]
  54. Severson, W., Partin, L., Schmaljohn, C. S. & Jonsson, C. B. ( 1999; ). Characterization of the Hantaan nucleocapsid protein-ribonucleic acid interaction. J Biol Chem 274, 33732–33739.[CrossRef]
    [Google Scholar]
  55. Severson, W. E., Xu, X. & Jonsson, C. B. ( 2001; ). cis-acting signals in encapsidation of Hantaan virus S-segment viral genomic RNA by its N protein. J Virol 75, 2646–2652.[CrossRef]
    [Google Scholar]
  56. Skare, J. M., Wijkamp, I., Denham, I., Rezende, J. A. M., Kitajima, E. W., Park, J.-W., Desvoyes, B., Rush, C. M., Michels, G. & other authors ( 2006; ). A new eriophyid mite-borne membrane-enveloped virus-like complex isolated from plants. Virology 347, 343–353.[CrossRef]
    [Google Scholar]
  57. Takeda, A., Sugiyama, K., Nagano, H., Mori, M., Kaido, M., Mise, K., Tsuda, S. & Okuno, T. ( 2002; ). Identification of a novel RNA silencing suppressor, NSs protein of Tomato spotted wilt virus. FEBS Lett 532, 75–79.[CrossRef]
    [Google Scholar]
  58. Valverde, R. A., Nameth, S. T. & Jordan, R. L. ( 1990; ). Analysis of double-stranded RNA for plant virus diagnosis. Plant Dis 74, 255–258.
    [Google Scholar]
  59. Whitfield, A. E., Ullman, D. E. & German, T. L. ( 2005; ). Tospovirus-thrips interactions. Annu Rev Phytopathol 43, 459–489.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82715-0
Loading
/content/journal/jgv/10.1099/vir.0.82715-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error