1887

Abstract

Immune control of human cytomegalovirus (HCMV) infection can be mediated by CD8 cytolytic T lymphocytes (CTL). Adoptive transfer of antiviral CTL confers protection against HCMV reactivation and disease. The tegument protein pp65 and the immediate-early 1 protein (IE1) are recognized to be major CTL targets, even though during productive infection the viral immunoevasion proteins gpUS2–11 act to suppress major histocompatibility complex (MHC) class I-restricted antigen presentation. Thus it was not clear how infected cells could be labelled with antigenic peptides in the face of immunoevasion. We show here that the immunodominant peptide pp65 was presented by MHC class I in cells infected with a gpUS2–11-competent virus. Presentation of pp65 was still detectable at 96 h post-infection, although at low levels. Partial suppression of pp65 presentation was dependent on the ability of the infecting strain to express gpUS2–11. MHC class I-restricted antigen presentation in HCMV-infected cells (encoding gpUS2–11) exhibited specificity for pp65-derived peptides, as infected fibroblasts did not present the IE1-derived nonapeptide IE1. Remarkably, infected cells could restore pp65 peptide presentation after acid removal of MHC class I despite gpUS2–11 expression. This recovery was shown to be dependent on proteasome functionality. In contrast to IE1, pp65 peptides are loaded on MHC class I molecules to be transported to the cell surface at early and late times after infection in the face of gpUS2–11-mediated immunoevasion. pp65 is therefore the first example of an HCMV protein only incompletely subjected to gpUS2–11-mediated immunoevasion.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82686-0
2007-05-01
2019-11-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/5/1429.html?itemId=/content/journal/jgv/10.1099/vir.0.82686-0&mimeType=html&fmt=ahah

References

  1. Ahn, K., Angulo, A., Ghazal, P., Peterson, P. A., Yang, Y. & Früh, K. ( 1996; ). Human cytomegalovirus inhibits antigen presentation by a sequential multistep process. Proc Natl Acad Sci U S A 93, 10990–10995.[CrossRef]
    [Google Scholar]
  2. Ahn, K., Gruhler, A., Galocha, B., Jones, T. R., Wiertz, E. J., Ploegh, H. L., Peterson, P. A., Yang, Y. & Früh, K. ( 1997; ). The ER-luminal domain of the HCMV glycoprotein US6 inhibits peptide translocation by TAP. Immunity 6, 613–621.[CrossRef]
    [Google Scholar]
  3. Arrode, G., Boccaccio, C., Lule, J., Allart, S., Moinard, N., Abastado, J. P., Alam, A. & Davrinche, C. ( 2000; ). Incoming human cytomegalovirus pp65 (UL83) contained in apoptotic infected fibroblasts is cross-presented to CD8+ T cells by dendritic cells. J Virol 74, 10018–10024.[CrossRef]
    [Google Scholar]
  4. Barnes, P. D. & Grundy, J. E. ( 1992; ). Down-regulation of the class I HLA heterodimer and beta 2-microglobulin on the surface of cells infected with cytomegalovirus. J Gen Virol 73, 2395–2403.[CrossRef]
    [Google Scholar]
  5. Benz, C. & Hengel, H. ( 2000; ). MHC class I-subversive gene functions of cytomegalovirus and their regulation by interferons – an intricate balance. Virus Genes 21, 39–47.[CrossRef]
    [Google Scholar]
  6. Bunde, T., Kirchner, A., Hoffmeister, B., Habedank, D., Hetzer, R., Cherepnev, G., Proesch, S., Reinke, P., Volk, H. D. & other authors ( 2005; ). Protection from cytomegalovirus after transplantation is correlated with immediate early 1-specific CD8 T cells. J Exp Med 201, 1031–1036.[CrossRef]
    [Google Scholar]
  7. Chee, M. S., Bankier, A. T., Beck, S., Bohni, R., Brown, C. M., Cerny, R., Horsnell, T., Hutchison, C. A., Kouzarides, T. & other authors ( 1990; ). Analysis of the protein-coding content of the sequence of human cytomegalovirus strain AD169. Curr Top Microbiol Immunol 154, 125–169.
    [Google Scholar]
  8. Cherepanov, P. P. & Wackernagel, W. ( 1995; ). Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158, 9–14.[CrossRef]
    [Google Scholar]
  9. Cobbold, M., Khan, N., Pourgheysari, B., Tauro, S., McDonald, D., Osman, H., Assenmacher, M., Billingham, L., Steward, C. & other authors ( 2005; ). Adoptive transfer of cytomegalovirus-specific CTL to stem cell transplant patients after selection by HLA–peptide tetramers. J Exp Med 202, 379–386.[CrossRef]
    [Google Scholar]
  10. Del-Val, M. & Lopez, D. ( 2002; ). Multiple proteases process viral antigens for presentation by MHC class I molecules to CD8+ T lymphocytes. Mol Immunol 39, 235–247.[CrossRef]
    [Google Scholar]
  11. Depto, A. S. & Stenberg, R. M. ( 1989; ). Regulated expression of the human cytomegalovirus pp65 gene: octamer sequence in the promoter is required for activation by viral gene products. J Virol 63, 1232–1238.
    [Google Scholar]
  12. Diamond, D. J., York, J., Sun, J. Y., Wright, C. L. & Forman, S. J. ( 1997; ). Development of a candidate HLA A*0201 restricted peptide-based vaccine against human cytomegalovirus infection. Blood 90, 1751–1767.
    [Google Scholar]
  13. Elkington, R., Walker, S., Crough, T., Menzies, M., Tellam, J., Bharadwaj, M. & Khanna, R. ( 2003; ). Ex vivo profiling of CD8+-T-cell responses to human cytomegalovirus reveals broad and multispecific reactivities in healthy virus carriers. J Virol 77, 5226–5240.[CrossRef]
    [Google Scholar]
  14. Falk, C. S., Mach, M., Schendel, D. J., Weiss, E. H., Hilgert, I. & Hahn, G. ( 2002; ). NK cell activity during human cytomegalovirus infection is dominated by US2–11-mediated HLA class I down-regulation. J Immunol 169, 3257–3266.[CrossRef]
    [Google Scholar]
  15. Frankenberg, N., Pepperl-Klindworth, S., Meyer, R. G. & Plachter, B. ( 2002; ). Identification of a conserved HLA-A2-restricted decapeptide from the IE1 protein (pUL123) of human cytomegalovirus. Virology 295, 208–216.[CrossRef]
    [Google Scholar]
  16. Gallez-Hawkins, G., Villacres, M. C., Li, X., Sanborn, M. C., Lomeli, N. A. & Zaia, J. A. ( 2003; ). Use of transgenic HLA A*0201/Kb and HHD II mice to evaluate frequency of cytomegalovirus IE1-derived peptide usage in eliciting human CD8 cytokine response. J Virol 77, 4457–4462.[CrossRef]
    [Google Scholar]
  17. Gillespie, G. M., Wills, M. R., Appay, V., O'Callaghan, C., Murphy, M., Smith, N., Sissons, P., Rowland-Jones, S., Bell, J. I. & Moss, P. A. ( 2000; ). Functional heterogeneity and high frequencies of cytomegalovirus- specific CD8+ T lymphocytes in healthy seropositive donors. J Virol 74, 8140–8150.[CrossRef]
    [Google Scholar]
  18. Gil-Torregrosa, B. C., Castano, A. R., Lopez, D. & Del, V. M. ( 2000; ). Generation of MHC class I peptide antigens by protein processing in the secretory route by furin. Traffic 1, 641–651.[CrossRef]
    [Google Scholar]
  19. Gromme, M., Uytdehaag, F. G., Janssen, H., Calafat, J., van Binnendijk, R. S., Kenter, M. J., Tulp, A., Verwoerd, D. & Neefjes, J. ( 1999; ). Recycling MHC class I molecules and endosomal peptide loading. Proc Natl Acad Sci U S A 96, 10326–10331.[CrossRef]
    [Google Scholar]
  20. Halenius, A., Momburg, F., Reinhard, H., Bauer, D., Lobigs, M. & Hengel, H. ( 2006; ). Physical and functional interactions of the cytomegalovirus US6 glycoprotein with the transporter associated with antigen processing. J Biol Chem 281, 5383–5390.
    [Google Scholar]
  21. Hengel, H., Koopmann, J. O., Flohr, T., Muranyi, W., Goulmy, E., Hammerling, G. J., Koszinowski, U. H. & Momburg, F. ( 1997; ). A viral ER-resident glycoprotein inactivates the MHC-encoded peptide transporter. Immunity 6, 623–632.[CrossRef]
    [Google Scholar]
  22. Hobom, U., Brune, W., Messerle, M., Hahn, G. & Koszinowski, U. H. ( 2000; ). Fast screening procedures for random transposon libraries of cloned herpesvirus genomes: mutational analysis of human cytomegalovirus envelope glycoprotein genes. J Virol 74, 7720–7729.[CrossRef]
    [Google Scholar]
  23. Holtappels, R., Podlech, J., Pahl-Seibert, M. F., Jülch, M., Thomas, D., Simon, C. O., Wagner, M. & Reddehase, M. J. ( 2004; ). Cytomegalovirus misleads its host by priming of CD8 T cells specific for an epitope not presented in infected tissues. J Exp Med 199, 131–136.
    [Google Scholar]
  24. Irmiere, A. & Gibson, W. ( 1983; ). Isolation and characterization of a noninfectious virion-like particle released from cells infected with human strains of cytomegalovirus. Virology 130, 118–133.[CrossRef]
    [Google Scholar]
  25. Jondal, M., Schirmbeck, R. & Reimann, J. ( 1996; ). MHC class I-restricted CTL responses to exogenous antigens. Immunity 5, 295–302.[CrossRef]
    [Google Scholar]
  26. Jones, T. R., Hanson, L. K., Sun, L., Slater, J. S., Stenberg, R. M. & Campbell, A. E. ( 1995; ). Multiple independent loci within the human cytomegalovirus unique short region down-regulate expression of major histocompatibility complex class I heavy chains. J Virol 69, 4830–4841.
    [Google Scholar]
  27. Jones, T. R., Wiertz, E. J., Sun, L., Fish, K. N., Nelson, J. A. & Ploegh, H. L. ( 1996; ). Human cytomegalovirus US3 impairs transport and maturation of major histocompatibility complex class I heavy chains. Proc Natl Acad Sci U S A 93, 11327–11333.[CrossRef]
    [Google Scholar]
  28. Kambayashi, T., Kraft-Leavy, J. R., Dauner, J. G., Sullivan, B. A., Laur, O. & Jensen, P. E. ( 2004; ). The nonclassical MHC class I molecule Qa-1 forms unstable peptide complexes. J Immunol 172, 1661–1669.[CrossRef]
    [Google Scholar]
  29. Kern, F., Surel, I. P., Faulhaber, N., Frömmel, C., Schneider-Mergener, J., Schönemann, C., Reinke, P. & Volk, H. D. ( 1999; ). Target structures of the CD8+-T-cell response to human cytomegalovirus: the 72-kilodalton major immediate-early protein revisited. J Virol 73, 8179–8184.
    [Google Scholar]
  30. Khan, N., Cobbold, M., Keenan, R. & Moss, P. A. ( 2002; ). Comparative analysis of CD8+ T cell responses against human cytomegalovirus proteins pp65 and immediate early 1 shows similarities in precursor frequency, oligoclonality, and phenotype. J Infect Dis 185, 1025–1034.[CrossRef]
    [Google Scholar]
  31. Khan, N., Bruton, R., Taylor, G. S., Cobbold, M., Jones, T. R., Rickinson, A. B. & Moss, P. A. ( 2005; ). Identification of cytomegalovirus-specific cytotoxic T lymphocytes in vitro is greatly enhanced by the use of recombinant virus lacking the US2 to US11 region or modified vaccinia virus Ankara expressing individual viral genes. J Virol 79, 2869–2879.[CrossRef]
    [Google Scholar]
  32. Kloetzel, P. M. ( 2004; ). Generation of major histocompatibility complex class I antigens: functional interplay between proteasomes and TPPII. Nat Immunol 5, 661–669.[CrossRef]
    [Google Scholar]
  33. Lee, E. C., Yu, D., Martinez de Velasco, J., Tessarollo, L., Swing, D. A., Court, D. L., Jenkins, N. A. & Copeland, N. G. ( 2001; ). A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics 73, 56–65.[CrossRef]
    [Google Scholar]
  34. Lehner, P. J., Karttunen, J. T., Wilkinson, G. W. & Cresswell, P. ( 1997; ). The human cytomegalovirus US6 glycoprotein inhibits transporter associated with antigen processing-dependent peptide translocation. Proc Natl Acad Sci U S A 94, 6904–6909.[CrossRef]
    [Google Scholar]
  35. Manley, T. J., Luy, L., Jones, T., Boeckh, M., Mutimer, H. & Riddell, S. R. ( 2004; ). Immune evasion proteins of human cytomegalovirus do not prevent a diverse CD8+ cytotoxic T-cell response in natural infection. Blood 104, 1075–1082.[CrossRef]
    [Google Scholar]
  36. McLaughlin-Taylor, E., Pande, H., Forman, S. J., Tanamachi, B., Li, C. R., Zaia, J. A., Greenberg, P. D. & Riddell, S. R. ( 1994; ). Identification of the major late human cytomegalovirus matrix protein pp65 as a target antigen for CD8+ virus-specific cytotoxic T lymphocytes. J Med Virol 43, 103–110.[CrossRef]
    [Google Scholar]
  37. Miyahira, Y., Murata, K., Rodriguez, D., Rodriguez, J. R., Esteban, M., Rodrigues, M. M. & Zavala, F. ( 1995; ). Quantification of antigen specific CD8+ T cells using an ELISPOT assay. J Immunol Methods 181, 45–54.[CrossRef]
    [Google Scholar]
  38. Mocarski, E. S. ( 2004; ). Immune escape and exploitation strategies of cytomegaloviruses: impact on and imitation of the major histocompatibility system. Cell Microbiol 6, 707–717.[CrossRef]
    [Google Scholar]
  39. Pahl-Seibert, M. F., Jülch, M., Podlech, J., Thomas, D., Deegen, P., Reddehase, M. J. & Holtappels, R. ( 2005; ). Highly protective in vivo function of cytomegalovirus IE1 epitope-specific memory CD8 T cells purified by T-cell receptor-based cell sorting. J Virol 79, 5400–5413.[CrossRef]
    [Google Scholar]
  40. Park, B., Kim, Y., Shin, J., Lee, S., Cho, K., Fruh, K., Lee, S. & Ahn, K. ( 2004; ). Human cytomegalovirus inhibits tapasin-dependent peptide loading and optimization of the MHC class I peptide cargo for immune evasion. Immunity 20, 71–85.[CrossRef]
    [Google Scholar]
  41. Park, B., Lee, S., Kim, E., Cho, K., Riddell, S. R., Cho, S. & Ahn, K. ( 2006; ). Redox regulation facilitates optimal peptide selection by MHC class I during antigen processing. Cell 127, 369–382.[CrossRef]
    [Google Scholar]
  42. Pass, R. F. ( 2001; ). Cytomegalovirus. In Fields Virology, 4th edn, pp. 2675–2705. Edited by D. M. Knipe & P. M. Howley. Philadelphia, PA: Lippincott Williams & Wilkins.
  43. Pepperl, S., Münster, J., Mach, M., Harris, J. R. & Plachter, B. ( 2000; ). Dense bodies of human cytomegalovirus induce both humoral and cellular immune responses in the absence of viral gene expression. J Virol 74, 6132–6146.[CrossRef]
    [Google Scholar]
  44. Pepperl-Klindworth, S., Frankenberg, N., Riegler, S. & Plachter, B. ( 2003; ). Protein delivery by subviral particles of human cytomegalovirus. Gene Ther 10, 278–284.[CrossRef]
    [Google Scholar]
  45. Plachter, B. ( 1999; ). Immunevasion during cytomegalovirus infection. Biomed Progr 12, 71–74.
    [Google Scholar]
  46. Rauser, G., Einsele, H., Sinzger, C., Wernet, D., Kuntz, G., Assenmacher, M., Campbell, J. D. & Topp, M. S. ( 2004; ). Rapid generation of combined CMV-specific CD4+ and CD8+ T-cell lines for adoptive transfer into recipients of allogeneic stem cell transplants. Blood 103, 3565–3572.[CrossRef]
    [Google Scholar]
  47. Reddehase, M. J. ( 2000; ). The immunogenicity of human and murine cytomegaloviruses. Curr Opin Immunol 12, 390–396.[CrossRef]
    [Google Scholar]
  48. Reddehase, M. J. ( 2002; ). Antigens and immunoevasins: opponents in cytomegalovirus immune surveillance. Nat Rev Immunol 2, 831–844.[CrossRef]
    [Google Scholar]
  49. Reddehase, M. J., Weiland, F., Münch, K., Jonjic, S., Luske, A. & Koszinowski, U. H. ( 1985; ). Interstitial murine cytomegalovirus pneumonia after irradiation: characterization of cells that limit viral replication during established infection of the lungs. J Virol 55, 264–273.
    [Google Scholar]
  50. Reddehase, M. J., Mutter, W., Münch, K., Buhring, H. J. & Koszinowski, U. H. ( 1987; ). CD8-positive T lymphocytes specific for murine cytomegalovirus immediate-early antigens mediate protective immunity. J Virol 61, 3102–3108.
    [Google Scholar]
  51. Reusser, P., Riddell, S. R., Meyers, J. D. & Greenberg, P. D. ( 1991; ). Cytotoxic T-lymphocyte response to cytomegalovirus after human allogeneic bone marrow transplantation: pattern of recovery and correlation with cytomegalovirus infection and disease. Blood 78, 1373–1380.
    [Google Scholar]
  52. Riddell, S. R., Watanabe, K. S., Goodrich, J. M., Li, C. R., Agha, M. E. & Greenberg, P. D. ( 1992; ). Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones. Science 257, 238–241.[CrossRef]
    [Google Scholar]
  53. Sigal, L. J., Crotty, S., Andino, R. & Rock, K. L. ( 1999; ). Cytotoxic T-cell immunity to virus-infected non-haematopoietic cells requires presentation of exogenous antigen. Nature 398, 77–80.[CrossRef]
    [Google Scholar]
  54. Simon, C. O., Holtappels, R., Tervo, H. M., Böhm, V., Daubner, T., Oehrlein-Karpi, S. A., Kühnapfel, B., Renzaho, A., Strand, D. & other authors ( 2006; ). CD8 T cells control cytomegalovirus latency by epitope-specific sensing of transcriptional reactivation. J Virol 80, 10436–10456.[CrossRef]
    [Google Scholar]
  55. Sugawara, S., Abo, T. & Kumagai, K. ( 1987; ). A simple method to eliminate the antigenicity of surface class I MHC molecules from the membrane of viable cells by acid treatment at pH 3. J Immunol Methods 100, 83–90.[CrossRef]
    [Google Scholar]
  56. Sylwester, A. W., Mitchell, B. L., Edgar, J. B., Taormina, C., Pelte, C., Ruchti, F., Sleath, P. R., Grabstein, K. H., Hosken, N. A. & other authors ( 2005; ). Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J Exp Med 202, 673–685.[CrossRef]
    [Google Scholar]
  57. Theobald, M., Biggs, J., Dittmer, D., Levine, A. J. & Sherman, L. A. ( 1995; ). Targeting p53 as a general tumor antigen. Proc Natl Acad Sci U S A 92, 11993–11997.[CrossRef]
    [Google Scholar]
  58. Varnum, S. M., Streblow, D. N., Monroe, M. E., Smith, P., Auberry, K. J., Pasa-Tolic, L., Wang, D., Camp, D. G., Rodland, K. & other authors ( 2004; ). Identification of proteins in human cytomegalovirus (HCMV) particles: the HCMV proteome. J Virol 78, 10960–10966.[CrossRef]
    [Google Scholar]
  59. Walter, E. A., Greenberg, P. D., Gilbert, M. J., Finch, R. J., Watanabe, K. S., Thomas, E. D. & Riddell, S. R. ( 1995; ). Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med 333, 1038–1044.[CrossRef]
    [Google Scholar]
  60. Wiertz, E. J., Jones, T. R., Sun, L., Bogyo, M., Geuze, H. J. & Ploegh, H. L. ( 1996a; ). The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell 84, 769–779.[CrossRef]
    [Google Scholar]
  61. Wiertz, E. J., Tortorella, D., Bogyo, M., Yu, J., Mothes, W., Jones, T. R., Rapoport, T. A. & Ploegh, H. L. ( 1996b; ). Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature 384, 432–438.[CrossRef]
    [Google Scholar]
  62. Wills, M. R., Carmichael, A. J., Mynard, K., Jin, X., Weekes, M. P., Plachter, B. & Sissons, J. G. ( 1996; ). The human cytotoxic T-lymphocyte (CTL) response to cytomegalovirus is dominated by structural protein pp65: frequency, specificity, and T-cell receptor usage of pp65-specific CTL. J Virol 70, 7569–7579.
    [Google Scholar]
  63. Wills, M. R., Carmichael, A. J. & Sissons, J. G. ( 2006; ). Adaptive cellular immunity to human cytomegalovirus. In Cytomegalovirus: Molecular Biology and Immunology, pp. 341–365. Edited by M. J. Reddehase. Norwich, UK: Caister Academic Press.
  64. Yu, Z., Theoret, M. R., Touloukian, C. E., Surman, D. R., Garman, S. C., Feigenbaum, L., Baxter, T. K., Baker, B. M. & Restifo, N. P. ( 2004; ). Poor immunogenicity of a self/tumor antigen derives from peptide–MHC-I instability and is independent of tolerance. J Clin Invest 114, 551–559.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82686-0
Loading
/content/journal/jgv/10.1099/vir.0.82686-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error