1887

Abstract

(RhPV) is a member of the family . The genomes of viruses in this family contain two open reading frames, each preceded by distinct internal ribosome entry site (IRES) elements. The RhPV 5′ IRES is functional in mammalian, insect and plant translation systems and can form 48S initiation complexes with just the mammalian initiation factors eIF2, eIF3 and eIF1. Large regions of the 5′ untranslated region (UTR) can be deleted without affecting initiation-complex formation. The minimal sequences required for directing internal initiation in mammalian (rabbit reticulocyte lysate), plant (wheatgerm extract) and insect (21 cells) translation systems have now been defined. A fragment (nt 426–579) from the 3′ portion of the 5′ UTR can direct translation in each of these translation systems. In addition, a distinct region (nt 300–429) is also active. Thus, unstructured regions within the 5′ UTR seem to be critical for IRES function.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82682-0
2007-05-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/5/1583.html?itemId=/content/journal/jgv/10.1099/vir.0.82682-0&mimeType=html&fmt=ahah

References

  1. Belsham G. J., Jackson R. J. 2000; Translation initiation on picornavirus RNA. In Translational Control of Gene Expression . , 2nd edn. pp 869–900 Edited by Sonenberg N., Hershey J. W. B., Mathews M. B. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
  2. Brown B. A., Ehrenfeld E. 1979; Translation of poliovirus RNA in vitro: changes in cleavage pattern and initiation sites by ribosomal salt wash. Virology 97:396–405 [CrossRef]
    [Google Scholar]
  3. Carter M. S., Kuhn K. M., Sarnow P. 2000; Cellular internal ribosome entry site elements and the use of cDNA microarrays in their investigation. In Translational Control of Gene Expression , 2nd edn. pp 615–634 Edited by Sonenberg N., Hershey J. W. B., Mathews M. B. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  4. Chard L. S., Kaku Y., Jones B., Nayak A., Belsham G. J. 2006a; Functional analyses of RNA structures shared between the internal ribosome entry sites of hepatitis C virus and the picornavirus porcine teschovirus 1 Talfan. J Virol 80:1271–1279 [CrossRef]
    [Google Scholar]
  5. Chard L. S., Bordeleau M. E., Pelletier J., Belsham G. J. 2006b; Hepatitis C virus-related internal ribosome entry sites are found in multiple genera of the family Picornaviridae . J Gen Virol 87:927–936 [CrossRef]
    [Google Scholar]
  6. Domier L. L., McCoppin N. K., D'Arcy C. J. 2000; Sequence requirements for translation initiation of Rhopalosiphum padi virus ORF2. Virology 268:264–271 [CrossRef]
    [Google Scholar]
  7. Dorner A. J., Semler B. L., Jackson R. J., Hanecak R., Duprey E., Wimmer E. 1984; In vitro translation of poliovirus RNA: utilization of internal initiation sites in reticulocyte lysate. J Virol 50:507–514
    [Google Scholar]
  8. Hellen C. U. T., Sarnow P. 2001; Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev 15:1593–1612 [CrossRef]
    [Google Scholar]
  9. Hershey J. W. B., Merrick W. C. 2000; Pathway and mechanism of initiation of protein synthesis. In Translational Control of Gene Expression . , 2nd edn. pp 33–88 Edited by Sonenberg N., Hershey J. W. B., Mathews M. B. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
  10. Kubick S., Schacherl J., Fleischer-Notter H., Royall E., Roberts L. O., Stiege W. 2003; In vitro translation in an insect-based cell-free system. In Cell-Free Protein Expression pp 209–217 Edited by Swartz J. R. Berlin: Springer;
    [Google Scholar]
  11. Moon J. S., Domier L. L., McCoppin N. K., D'Arcy C. J., Jin H. 1998; Nucleotide sequence analysis shows that Rhopalosiphum padi virus is a member of a novel group of insect-infecting RNA viruses. Virology 243:54–65 [CrossRef]
    [Google Scholar]
  12. Pijlman G. P., Roode E. C., Fan X., Roberts L. O., Belsham G. J., Vlak J. M., van Oers M. M. 2006; Stabilized baculovirus vector expressing a heterologous gene and GP64 from a single bicistronic transcript. J Biotechnol 123:13–21 [CrossRef]
    [Google Scholar]
  13. Pisarev A. V., Chard L. S., Kaku Y., Johns H. L., Shatsky I. N., Belsham G. J. 2004; Functional and structural similarities between the internal ribosome entry sites of hepatitis C virus and porcine teschovirus, a picornavirus. J Virol 78:4487–4497 [CrossRef]
    [Google Scholar]
  14. Robertson M. E. M., Seamons R. A., Belsham G. J. 1999; A selection system for functional internal ribosome entry site (IRES) elements: analysis of the requirement for a conserved GNRA tetraloop in the encephalomyocarditis virus IRES. RNA 5:1167–1179 [CrossRef]
    [Google Scholar]
  15. Royall E., Woolaway K. E., Schacherl J., Kubick S., Belsham G. J., Roberts L. O. 2004; The Rhopalosiphum padi virus 5′ IRES is functional in Spodoptera frugiperda cells and in their cell-free lysates: implications for the baculovirus expression system. J Gen Virol 85:1565–1569 [CrossRef]
    [Google Scholar]
  16. Sasaki J., Nakashima N. 1999; Translation initiation at the CUU codon is mediated by the internal ribosome entry site of an insect picorna-like virus in vitro. J Virol 73:1219–1226
    [Google Scholar]
  17. Stoneley M., Subkhanulova T., LeQuesne J. P. C., Coldwell M., Jopling C., Belsham G. J., Willis A. E. 2000; Analysis of the c-myc IRES; a potential role for the cell-type specific trans-acting factors and the nucelar compartment. Nucleic Acids Res 28:687–694 [CrossRef]
    [Google Scholar]
  18. Terenin I. M., Dmitriev S. E., Andreev D. E., Royall E., Belsham G. J., Roberts L. O., Shatsky I. N. 2005; A ‘cross-kingdom’ IRES reveals a simplified mode of internal ribosome entry. Mol Cell Biol 25:7879–7888 [CrossRef]
    [Google Scholar]
  19. van der Velden A., Kaminski A., Jackson R. J., Belsham G. J. 1995; Defective point mutants of the encephalomyocarditis virus internal ribosome entry site can be complemented in trans . Virology 214:82–90 [CrossRef]
    [Google Scholar]
  20. van Poelwijk F., Broer R., Belsham G. J., Oudshoorn P., Vlak J. M., Goldbach R. W. 1995; A hybrid baculovirus-bacteriophage T7 transient expression system. Biotechnology (N Y) 13:261–264 [CrossRef]
    [Google Scholar]
  21. Wilson J. E., Powell M. J., Hoover S. E., Sarnow P. 2000a; Naturally occurring dicistronic cricket paralysis virus RNA is regulated by two internal ribosome entry sites. Mol Cell Biol 20:4990–4999 [CrossRef]
    [Google Scholar]
  22. Wilson J. E., Pestova T. V., Hellen C. U. T., Sarnow P. 2000b; Initiation from the A site of the ribosome. Cell 102:511–520 [CrossRef]
    [Google Scholar]
  23. Woolaway K. E., Lazaridis K., Belsham G. J., Carter M. J., Roberts L. O. 2001; The 5′ UTR of Rhopalosiphum padi virus (RhPV) contains an internal ribosome entry site (IRES) which functions efficiently in mammalian, insect and plant translation systems. J Virol 75:10244–10249 [CrossRef]
    [Google Scholar]
  24. Yang Q., Sarnow P. 1997; Location of the internal ribosome entry site in the 5′ non-coding region of the immunoglobulin heavy-chain binding protein (Bip) mRNA: evidence for specific RNA-protein interactions. Nucleic Acids Res 25:2800–2807 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82682-0
Loading
/content/journal/jgv/10.1099/vir.0.82682-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error