1887

Abstract

Two novel human papillomaviruses (HPVs), HPV93 and HPV96, with genomes of 7450 and 7438 bp, respectively, are described. The L1 open reading frame of HPV93 showed highest identity to HPV24 (79 %) and that of HPV96 had highest identity to HPV92 (71 %). Real-time PCR for HPV92, 93 and 96 on stripped biopsies from tumours and healthy skin from 269 immunocompetent patients found HPV DNA in 2.6 % of tumours and in 0.4 % of healthy skin samples. Double infections were observed in two tumours. HPV92 was detected in four, HPV93 in two and HPV96 in three tumours. The range of viral loads spanned from one copy per 45 cells to one copy per 10 000 cells. The E7 proteins of HPV92, 93 and 96 were found to bind the retinoblastoma protein (pRb). These results suggest a possible role for these HPV types in skin carcinogenesis that deserves further study.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82679-0
2007-05-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/5/1479.html?itemId=/content/journal/jgv/10.1099/vir.0.82679-0&mimeType=html&fmt=ahah

References

  1. Akgul B., Cooke J. C., Storey A. 2006; HPV-associated skin disease. J Pathol 208:165–175 [CrossRef]
    [Google Scholar]
  2. Alam M., Ratner D. 2001; Cutaneous squamous-cell carcinoma. N Engl J Med 344:975–983 [CrossRef]
    [Google Scholar]
  3. Antonsson A., Hansson B. G. 2002; Healthy skin of many animal species harbors papillomaviruses which are closely related to their human counterparts. J Virol 76:12537–12542 [CrossRef]
    [Google Scholar]
  4. Antonsson A., Forslund O., Ekberg K., Sterner G., Hansson B. G. 2000; The ubiquity and impressive genomic diversity of human skin papillomaviruses suggest a commensalic nature of these viruses. J Virol 74:11636–11641 [CrossRef]
    [Google Scholar]
  5. Antonsson A., Erfurt C., Hazard K., Holmgren V., Simon M., Kataoka A., Hossin S., Håkangård C., Hansson B. G. 2003a; Prevalence and type spectrum of human papillomaviruses in healthy skin samples collected in three continents. J Gen Virol 84:1881–1886 [CrossRef]
    [Google Scholar]
  6. Antonsson A., Karanfilovska S., Lindqvist P. G., Hansson B. G. 2003b; General acquisition of human papillomavirus infections of skin occurs in early infancy. J Clin Microbiol 41:2509–2514 [CrossRef]
    [Google Scholar]
  7. Bens G., Wieland U., Hofmann A., Hopfl R., Pfister H. 1998; Detection of new human papillomavirus sequences in skin lesions of a renal transplant recipient and characterization of one complete genome related to epidermodysplasia verruciformis-associated types. J Gen Virol 79:779–787
    [Google Scholar]
  8. Caldeira S., Zehbe I., Accardi R., Malanchi I., Dong W., Giarre M., de Villiers E. M., Filotico R., Boukamp P., Tommasino M. 2003; The E6 and E7 proteins of the cutaneous human papillomavirus type 38 display transforming properties. J Virol 77:2195–2206 [CrossRef]
    [Google Scholar]
  9. de Villiers E. M., Fauquet C., Broker T. R., Bernard H. U., zur Hausen H. 2004; Classification of papillomaviruses. Virology 324:17–27 [CrossRef]
    [Google Scholar]
  10. Forslund O., Antonsson A., Nordin P., Stenquist B., Hansson B. G. 1999; A broad range of human papillomavirus types detected with a general PCR method suitable for analysis of cutaneous tumours and normal skin. J Gen Virol 80:2437–2443
    [Google Scholar]
  11. Forslund O., Antonsson A., Higgins G., Ly H., Delius H., Hunziker A., Villiers E. M. 2003a; Nucleotide sequence and phylogenetic classification of candidate human papilloma virus type 92. Virology 312:255–260 [CrossRef]
    [Google Scholar]
  12. Forslund O., Ly H., Reid C., Higgins G. 2003b; A broad spectrum of human papillomavirus types is present in the skin of Australian patients with non-melanoma skin cancers and solar keratosis. Br J Dermatol 149:64–73 [CrossRef]
    [Google Scholar]
  13. Forslund O., Lindelof B., Hradil E., Nordin P., Stenquist B., Kirnbauer R., Slupetzky K., Dillner J. 2004; High prevalence of cutaneous human papillomavirus DNA on the top of skin tumors but not in ‘Stripped’ biopsies from the same tumors. J Invest Dermatol 123:388–394 [CrossRef]
    [Google Scholar]
  14. Fuchs P. G., Pfister H. 1990; Papillomaviruses in epidermodysplasia verruciformis. Papillomavirus Rep 1:1–4
    [Google Scholar]
  15. Harwood C. A., McGregor J. M., Proby C. M., Breuer J. 1999; Human papillomavirus and the development of non-melanoma skin cancer. J Clin Pathol 52:249–253 [CrossRef]
    [Google Scholar]
  16. Hazard K., Eliasson L., Dillner J., Forslund O. 2006; Subtype HPV38b[FA125] demonstrates heterogeneity of human papillomavirus type 38. Int J Cancer 119:1073–1077 [CrossRef]
    [Google Scholar]
  17. Iftner T., Elbel M., Schopp B., Hiller T., Loizou J. I., Caldecott K. W., Stubenrauch F. 2002; Interference of papillomavirus E6 protein with single-strand break repair by interaction with XRCC1. EMBO J 21:4741–4748 [CrossRef]
    [Google Scholar]
  18. Jackson S., Storey A. 2000; E6 proteins from diverse cutaneous HPV types inhibit apoptosis in response to UV damage. Oncogene 19:592–598 [CrossRef]
    [Google Scholar]
  19. Kiviat N. B. 1999; Papillomaviruses in non-melanoma skin cancer: epidemiological aspects. Semin Cancer Biol 9:397–403 [CrossRef]
    [Google Scholar]
  20. Lentz M. R. 2002; A carboxyl-terminal serine of the bovine papillomavirus E1 protein is phosphorylated in vivo and in vitro. Virus Res 83:213–219 [CrossRef]
    [Google Scholar]
  21. Majewski S., Jablonska S. 1995; Epidermodysplasia verruciformis as a model of human papillomavirus-induced genetic cancer of the skin. Arch Dermatol 131:1312–1318 [CrossRef]
    [Google Scholar]
  22. Marin O., Meggio F., Marchiori F., Borin G., Pinna L. A. 1986; Site specificity of casein kinase-2 (TS) from rat liver cytosol. A study with model peptide substrates. Eur J Biochem 160:239–244 [CrossRef]
    [Google Scholar]
  23. Meyer T., Arndt R., Christophers E., Nindl I., Stockfleth E. 2001; Importance of human papillomaviruses for the development of skin cancer. Cancer Detect Prev 25:533–547
    [Google Scholar]
  24. Munoz N. 2000; Human papillomavirus and cancer: the epidemiological evidence. J Clin Virol 19:1–5 [CrossRef]
    [Google Scholar]
  25. O'Connor M., Chan S.-Y., Bernard H. U. 1995; Transcription factor binding sites in the long control region of genital HPVs. In Human Papillomaviruses 1995: a Compilation and Analysis of Nucleic Acid and Amino Acid Sequences . pp. III-23–III-46 Edited by Myers G., Delius H., Icenogel J., Wheeler C., Bernard H. U., Baker C., Halpern A., Wheeler C. Los Alamos, NM: Los Alamos National Laboratory;
  26. Orth G. 1986; Epidermodysplasia verruciformis: a model for understanding the oncogenicity of human papillomaviruses. Ciba Found Symp 120:157–174
    [Google Scholar]
  27. Pfister H., Ter Schegget J. 1997; Role of HPV in cutaneous premalignant and malignant tumors. Clin Dermatol 15:335–347 [CrossRef]
    [Google Scholar]
  28. Prestridge D. S. 1991; signal scan: a computer program that scans DNA sequences for eukaryotic transcriptional elements. Comput Appl Biosci 7:203–206
    [Google Scholar]
  29. Proby C. M., Purdie K. J., Sexton C. J., Purkis P., Navsaria H. A., Stables J. N., Leigh I. M. 2000; Spontaneous keratinocyte cell lines representing early and advanced stages of malignant transformation of the epidermis. Exp Dermatol 9:104–117 [CrossRef]
    [Google Scholar]
  30. Purdie K. J., Sexton C. J., Proby C. M., Glover M. T., Williams A. T., Stables J. N., Leigh I. M. 1993; Malignant transformation of cutaneous lesions in renal allograft patients: a role for human papillomavirus. Cancer Res 53:5328–5333
    [Google Scholar]
  31. Radulescu R. T., Bellitti M. R., Ruvo M., Cassani G., Fassina G. 1995; Binding of the LXCXE insulin motif to a hexapeptide derived from retinoblastoma protein. Biochem Biophys Res Commun 206:97–102 [CrossRef]
    [Google Scholar]
  32. Saiki R. K., Scharf S., Faloona F., Mullis K. B., Horn G. T., Erlich H. A., Arnheim N. 1985; Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350–1354 [CrossRef]
    [Google Scholar]
  33. Schmitt A., Harry J. B., Rapp B., Wettstein F. O., Iftner T. 1994; Comparison of the properties of the E6 and E7 genes of low- and high-risk cutaneous papillomaviruses reveals strongly transforming and high Rb-binding activity for the E7 protein of the low-risk human papillomavirus type 1. J Virol 68:7051–7059
    [Google Scholar]
  34. Ullman C. G., Haris P. I., Galloway D. A., Emery V. C., Perkins S. J. 1996; Predicted alpha-helix/beta-sheet secondary structures for the zinc-binding motifs of human papillomavirus E7 and E6 proteins by consensus prediction averaging and spectroscopic studies of E7. Biochem J 319:229–239
    [Google Scholar]
  35. Weissenborn S. J., Nindl I., Purdie K., Harwood C., Proby C., Breuer J., Majewski S., Pfister H., Wieland U. 2005; Human papillomavirus-DNA loads in actinic keratoses exceed those in non-melanoma skin cancers. J Invest Dermatol 125:93–97 [CrossRef]
    [Google Scholar]
  36. Yamashita T., Segawa K., Fujinaga Y., Nishikawa T., Fujinaga K. 1993; Biological and biochemical activity of E7 genes of the cutaneous human papillomavirus type 5 and 8. Oncogene 8:2433–2441
    [Google Scholar]
  37. zur Hausen H. 1996; Papillomavirus infections – a major cause of human cancers. Biochim Biophys Acta 1288F55–F78
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82679-0
Loading
/content/journal/jgv/10.1099/vir.0.82679-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error