Type I feline coronavirus spike glycoprotein fails to recognize aminopeptidase N as a functional receptor on feline cell lines Free

Abstract

There are two types of feline coronaviruses that can be distinguished by serology and sequence analysis. Type I viruses, which are prevalent in the field but are difficult to isolate and propagate in cell culture, and type II viruses, which are less prevalent but replicate well in cell culture. An important determinant of coronavirus infection, and in cell culture, is the interaction of the virus surface glycoprotein with a cellular receptor. It is generally accepted that feline aminopeptidase N can act as a receptor for the attachment and entry of type II strains, and it has been proposed that the same molecule acts as a receptor for type I viruses. However, the experimental data are inconclusive. The aim of the studies reported here was to provide evidence for or against the involvement of feline aminopeptidase N as a receptor for type I feline coronaviruses. Our approach was to produce retroviral pseudotypes that bear the type I or type II feline coronavirus surface glycoprotein and to screen a range of feline cell lines for the expression of a functional receptor for attachment and entry. Our results show that type I feline coronavirus surface glycoprotein fails to recognize feline aminopeptidase N as a functional receptor on three continuous feline cell lines. This suggests that feline aminopeptidase N is not a receptor for type I feline coronaviruses. Our results also indicate that it should be possible to use retroviral pseudotypes to identify and characterize the cellular receptor for type I feline coronaviruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82666-0
2007-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/6/1753.html?itemId=/content/journal/jgv/10.1099/vir.0.82666-0&mimeType=html&fmt=ahah

References

  1. Addie D. D., Jarrett O. 2001; Use of a reverse-transcriptase polymerase chain reaction for monitoring the shedding of feline coronavirus by healthy cats. Vet Rec 148:649–653 [CrossRef]
    [Google Scholar]
  2. Addie D. D., Schaap I. A., Nicolson L., Jarrett O. 2003; Persistence and transmission of natural type I feline coronavirus infection. J Gen Virol 84:2735–2744 [CrossRef]
    [Google Scholar]
  3. Assavalapsakul W., Smith D. R., Panyim S. 2006; Identification and characterization of a Penaeus monodon lymphoid cell-expressed receptor for the yellow head virus. J Virol 80:262–269 [CrossRef]
    [Google Scholar]
  4. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 1987 Current Protocols in Molecular Biology New York: Wiley;
    [Google Scholar]
  5. Benetka V., Kubber-Heiss A., Kolodziejek J., Nowotny N., Hofmann-Parisot M., Mostl K. 2004; Prevalence of feline coronavirus types I and II in cats with histopathologically verified feline infectious peritonitis. Vet Microbiol 99:31–42 [CrossRef]
    [Google Scholar]
  6. Corapi W. V., Olsen C. W., Scott F. W. 1992; Monoclonal antibody analysis of neutralization and antibody-dependent enhancement of feline infectious peritonitis virus. J Virol 66:6695–6705
    [Google Scholar]
  7. Dye C., Siddell S. G. 2005; Genomic RNA sequence of Feline coronavirus strain FIPV WSU-79/1146. J Gen Virol 86:2249–2253 [CrossRef]
    [Google Scholar]
  8. Herrewegh A. A., Smeenk I., Horzinek M. C., Rottier P. J., de Groot R. J. 1998; Feline coronavirus type II strains 79–1683 and 79–1146 originate from a double recombination between feline coronavirus type I and canine coronavirus. J Virol 72:4508–4514
    [Google Scholar]
  9. Hofmann H., Simmons G., Rennekamp A. J., Chaipan C., Gramberg T., Heck E., Geier M., Wegele A., Marzi A. other authors 2006; Highly conserved regions within the spike proteins of human coronaviruses 229E and NL63 determine recognition of their respective cellular receptors. J Virol 80:8639–8652 [CrossRef]
    [Google Scholar]
  10. Hohdatsu T., Okada S., Ishizuka Y., Yamada H., Koyama H. 1992; The prevalence of types I and II feline coronavirus infections in cats. J Vet Med Sci 54:557–562 [CrossRef]
    [Google Scholar]
  11. Hohdatsu T., Tatekawa T., Koyama H. 1995; Enhancement of feline infectious peritonitis virus type I infection in cell cultures using low-speed centrifugation. J Virol Methods 51:357–362 [CrossRef]
    [Google Scholar]
  12. Hohdatsu T., Izumiya Y., Yokoyama Y., Kida K., Koyama H. 1998; Differences in virus receptor for type I and type II feline infectious peritonitis virus. Arch Virol 143:839–850 [CrossRef]
    [Google Scholar]
  13. Jacobse-Geels H. E., Horzinek M. C. 1983; Expression of feline infectious peritonitis coronavirus antigens on the surface of feline macrophage-like cells. J Gen Virol 64:1859–1866 [CrossRef]
    [Google Scholar]
  14. Kozak M. 1987; An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res 15:8125–8148 [CrossRef]
    [Google Scholar]
  15. Kuo L., Godeke G. J., Raamsman M. J., Masters P. S., Rottier P. J. 2000; Retargeting of coronavirus by substitution of the spike glycoprotein ectodomain: crossing the host cell species barrier. J Virol 74:1393–1406 [CrossRef]
    [Google Scholar]
  16. Li W., Moore M. J., Vasilieva N., Sui J., Wong S. K., Berne M. A., Somasundaran M., Sullivan J. L., Luzuriaga K. other authors 2003; Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426:450–454 [CrossRef]
    [Google Scholar]
  17. Lontok E., Corse E., Machamer C. E. 2004; Intracellular targeting signals contribute to localization of coronavirus spike proteins near the virus assembly site. J Virol 78:5913–5922 [CrossRef]
    [Google Scholar]
  18. Masters P. S. 2006; The molecular biology of coronaviruses. Adv Virus Res 66:193–292
    [Google Scholar]
  19. Miguel B., Pharr G. T., Wang C. 2002; The role of feline aminopeptidase N as a receptor for infectious bronchitis virus. Brief review. Arch Virol 147:2047–2056 [CrossRef]
    [Google Scholar]
  20. Naldini L., Blomer U., Gallay P., Ory D., Mulligan R., Gage F. H., Verma I. M., Trono D. 1996; In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263–267 [CrossRef]
    [Google Scholar]
  21. Niwa H., Yamamura K., Miyazaki J. 1991; Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108:193–199 [CrossRef]
    [Google Scholar]
  22. Pedersen N. C. 1995; An overview of feline enteric coronavirus and infectious peritonitis virus infections. Feline Pract 23:7–20
    [Google Scholar]
  23. Rossen J. W., Kouame J., Goedheer A. J., Vennema H., Rottier P. J. 2001; Feline and canine coronaviruses are released from the basolateral side of polarized epithelial LLC-PK1 cells expressing the recombinant feline aminopeptidase-N cDNA. Arch Virol 146:791–799 [CrossRef]
    [Google Scholar]
  24. Siddell S., Ziebuhr J., Snijder E. J. 2005; Coronaviruses, toroviruses, and arteriviruses. In Topley & Wilson's Microbiology and Microbial Infections Virology pp 823–856 Edited by Mahy B. W. J, ter Meulen V. London: Hodder Arnold;
    [Google Scholar]
  25. Simmons G., Reeves J. D., Rennekamp A. J., Amberg S. M., Piefer A. J., Bates P. 2004; Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry. Proc Natl Acad Sci U S A 101:4240–4245 [CrossRef]
    [Google Scholar]
  26. Tatsuo H., Ono N., Tanaka K., Yanagi Y. 2000; SLAM (CDw150) is a cellular receptor for measles virus. Nature 406:893–897 [CrossRef]
    [Google Scholar]
  27. Temperton N. J., Chan P. K., Simmons G., Zambon M. C., Tedder R. S., Takeuchi Y., Weiss R. A. 2005; Longitudinally profiling neutralizing antibody response to SARS coronavirus with pseudotypes. Emerg Infect Dis 11:411–416 [CrossRef]
    [Google Scholar]
  28. Towers G., Bock M., Martin S., Takeuchi Y., Stoye J. P., Danos O. 2000; A conserved mechanism of retrovirus restriction in mammals. Proc Natl Acad Sci U S A 97:12295–12299 [CrossRef]
    [Google Scholar]
  29. Tresnan D. B., Levis R., Holmes K. V. 1996; Feline aminopeptidase N serves as a receptor for feline, canine, porcine, and human coronaviruses in serogroup I. J Virol 70:8669–8674
    [Google Scholar]
  30. Yeager C. L., Ashmun R. A., Williams R. K., Cardellichio C. B., Shapiro L. H., Look A. T., Holmes K. V. 1992; Human aminopeptidase N is a receptor for human coronavirus 229E. Nature 357:420–422 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82666-0
Loading
/content/journal/jgv/10.1099/vir.0.82666-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed