1887

Abstract

Human flavivirus infections elicit virus species-specific and cross-reactive immune responses. The flavivirus envelope (E) glycoprotein is the primary antigen inducing protective immunity; however, the presence of cross-reactive antibodies in human sera creates problems for serodiagnosis. Using a West Nile virus-like particle system, we performed mutagenesis across all three E protein functional domains to identify epitope determinants for a panel of monoclonal antibodies (mAbs) raised against different flaviviruses and exhibiting diverse patterns of cross-reactivity. Residues within the highly conserved fusion peptide were the only epitope determinants identified and were important not only for broadly cross-reactive mAbs recognizing all of the medically important flavivirus serocomplexes, but also for less-broad, complex-reactive mAbs. Moreover, different substitutions at specific fusion peptide residues produced highly variable effects on antibody reactivity and virus-like particle secretion. These results support and extend the conclusion that the fusion peptide region constitutes an immunodominant epitope stimulating antibodies with diverse patterns of cross-reactivity.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82640-0
2007-04-01
2021-07-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/4/1169.html?itemId=/content/journal/jgv/10.1099/vir.0.82640-0&mimeType=html&fmt=ahah

References

  1. Allison S. L., Schalich J., Staisny K., Mandl C. W., Heinz F. X. 2001; Mutational evidence of an internal fusion peptide in the flavivirus envelope protein. J Virol 75:4268–4275 [CrossRef]
    [Google Scholar]
  2. Calisher C. H., Karabatsos N., Dalrymple J. M., Shope R. E., Porterfield J. S., Westaway E. G., Brandt W. E. 1989; Antigenic relationships between flaviviruses as determined by cross-neutralization tests with polyclonal antisera. J Gen Virol 70:37–43 [CrossRef]
    [Google Scholar]
  3. Chang G. J., Hunt A. R., Davis B. S. 2000; A single intramuscular injection of recombinant plasmid DNA induces protective immunity and prevents Japanese encephalitis in mice. J Virol 74:4244–4252 [CrossRef]
    [Google Scholar]
  4. Chang G. J., Kuno G., Purdy D. E., Davis B. S. 2004; Recent advancements in flavivirus vaccine development. Expert Rev Vaccines 3:199–220 [CrossRef]
    [Google Scholar]
  5. Crill W. D., Chang G. J. 2004; Localization and characterization of flavivirus envelope glycoprotein cross-reactive epitopes. J Virol 78:13975–13986 [CrossRef]
    [Google Scholar]
  6. Crill W. D., Roehrig J. T. 2001; Monoclonal antibodies that bind to domain III of dengue virus E glycoprotein are the most efficient blockers of virus adsorption to Vero cells. J Virol 75:7769–7773 [CrossRef]
    [Google Scholar]
  7. Davis B. S., Chang G. J., Cropp B., Roehrig J. T., Martin D. A., Mitchell C. J., Bowen R., Buning M. L. 2001; West Nile virus recombinant DNA vaccine protects mouse and horse from virus challenge and expresses in vitro a noninfectious recombinant antigen that can be used in enzyme-linked immunosorbent assays. J Virol 75:4040–4047 [CrossRef]
    [Google Scholar]
  8. Goncalvez A. P., Purcell R. H., Li C. J. 2004; Epitope determinants of a chimpanzee Fab fragment that efficiently cross-neutralizes dengue type 1 and type 2 viruses map to inside and in close proximity to fusion loop of the dengue type 2 virus envelope glycoprotein. J Virol 78:12919–12928 [CrossRef]
    [Google Scholar]
  9. Heinz F. X., Berger R., Majdic O., Knapp W., Kunz C. 1982; Monoclonal antibodies to the structural glycoprotein of tick-borne encephalitis virus. Infect Immun 37:869–874
    [Google Scholar]
  10. Holmes D. A., Purdy D. E., Chao D., Noga A. J., Chang G. J. 2005; Comparative analysis of immunoglobulin M (IgM) capture enzyme-linked immunosorbent assay using virus-like particles of virus-infected mouse brain antigens to detect IgM antibody in sera from patients with evident flaviviral infections. J Clin Microbiol 43:3227–3236 [CrossRef]
    [Google Scholar]
  11. Kuhn R. J., Zhang W., Rossmann M. G., Pletnev S. V., Corver J., Lenches E., Jones C. T., Mukhopadhyay S., Chipman P. R. other authors 2002; Structure of DEN virus: implications for flavivirus organization, maturation, and fusion. Cell 108:717–725 [CrossRef]
    [Google Scholar]
  12. Kuno G. 2003; Serodiagnosis of flaviviral infections and vaccinations in humans. Adv Virus Res 61:3–65
    [Google Scholar]
  13. Lanciotti R. S., Roehrig J. T., Deubel V., Smith J., Parker M., Steele K., Crise B., Volpe K. E., Crabtree M. B. other authors 1999; Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science 286:2333–2337 [CrossRef]
    [Google Scholar]
  14. Lindenbach B. D., Rice C. M. 2001; Flaviviridae : the viruses and their replication. In Fields Virology , 4th edn. pp 991–1041 Edited by Knipe D. M., Howley P. M. Philadelphia, PA: Lippincott Williams & Wilkins;
    [Google Scholar]
  15. Mackenzie J. S., Gubler D. J., Petersen L. R. 2004; Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. Nat Med 10:S98–S109 [CrossRef]
    [Google Scholar]
  16. Martin D. A., Biggerstaff B. J., Allen B., Johnson A. J., Lanciotti R. S., Roehrig J. T. 2002; Use of immunoglobulin M cross-reactions in differential diagnosis of human flaviviral encephalitis infections in the United States. Clin Diagn Lab Immunol 9:544–549
    [Google Scholar]
  17. Modis Y., Ogata S., Clements D., Harrison S. C. 2003; A ligand-binding pocket in the DEN virus envelope glycoprotein. Proc Natl Acad Sci U S A 100:6986–6991 [CrossRef]
    [Google Scholar]
  18. Mukhopadhyay S., Kim B.-S., Chipman P. R., Rossmann M. G., Kuhn R. J. 2003; Structure of West Nile virus. Science 302:248 [CrossRef]
    [Google Scholar]
  19. Rey F. A., Heinz F. X., Mandl C., Kunz K., Harrison S. C. 1995; The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution. Nature 375:291–298 [CrossRef]
    [Google Scholar]
  20. Roehrig J. T. 2003; Antigenic structure of flavivirus proteins. Adv Virus Res 59:141–175
    [Google Scholar]
  21. Roehrig J. T., Bolin R. A., Kelly R. G. 1998; Monoclonal antibody mapping of the envelope glycoprotein of the DEN 2 virus, Jamaica. Virology 246:317–328 [CrossRef]
    [Google Scholar]
  22. Sabin A. B. 1952; Research on dengue during World War II. Am J Trop Med Hyg 1:30–50
    [Google Scholar]
  23. Stiasny K., Kiermayr S., Holzman H., Heinz F. X. 2006; Cryptic properties of a cluster of dominant flavivirus cross-reactive antigenic sites. J Virol 80:9557–9568 [CrossRef]
    [Google Scholar]
  24. Tesh R. B., Travassos de Rosa P. A. A., Guzman H., Araujo T. P., Xiao S.-Y. 2002; Immunization with heterologous flaviviruses protective against fatal West Nile encephalitis. Emerg Infect Dis 8:245–251 [CrossRef]
    [Google Scholar]
  25. Throsby M., Geuijen C., Goudsmit J., Bakker A. Q., Korimbocus J., Kramer R. A., Clijsters-van der Horst M., de Jong M., Jongeneelen M. other authors 2006; Isolation and characterization of human monoclonal antibodies from individuals infected with West Nile virus. J Virol 80:6982–6992 [CrossRef]
    [Google Scholar]
  26. Zhang S., Li L., Woodsen S. E., Huang C. Y.-H., Kinney R. M., Barrett A. D. T., Beasley D. W. C. 2006; A mutation in the envelope protein fusion loop attenuates mouse neuroinvasiveness of the NY99 strain of West Nile virus. Virology 353:35–40 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82640-0
Loading
/content/journal/jgv/10.1099/vir.0.82640-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error