1887

Abstract

The promising potential of RNA interference-based antiviral therapies has been well established. However, the antiviral efficacy is largely limited by genomic diversity and genetic instability of various viruses, including human enterovirus B (HEB). In this work, the first evidence supporting the anti-HEB activity of the small interfering RNA (siRNA) targeting the highly conserved -acting replication element (CRE) within virus coding region 2C is presented. HeLa cells pre-treated with siRNA complementary to the conserved sequence of the loop region of CRE(2C) were effectively rescued from the cytopathic effects of HEBs. Downregulation of virus replication and attenuation of cytotoxicity were consistently observed in various reference strains and clinical isolates. Cells treated with this siRNA were resistant to the emergence of viable escape mutants and showed sustained antiviral ability. Collectively, the data suggest that the siRNA based on the disordered structure within the highly conserved -acting coding region has potential as a universal, persistent anti-HEB agent. The same strategy can be successfully applied to the development of siRNA with consistent antiviral effects in other virus groups possessing similar RNA elements.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82633-0
2007-07-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/7/2003.html?itemId=/content/journal/jgv/10.1099/vir.0.82633-0&mimeType=html&fmt=ahah

References

  1. Ahn J., Joo C. H., Seo I., Kim D., Hong H. N., Kim Y. K., Lee H. 2003; Characteristics of apoptotic cell death induced by coxsackievirus B in permissive Vero cells. Intervirology 46:245–251 [CrossRef]
    [Google Scholar]
  2. Ahn J., Jun E. S., Lee H. S., Yoon S. Y., Kim D., Joo C. H., Kim Y. K., Lee H. 2005; A small interfering RNA targeting coxsackievirus B3 protects permissive HeLa cells from viral challenge. J Virol 79:8620–8624 [CrossRef]
    [Google Scholar]
  3. Aldabe R., Carrasco L. 1995; Induction of membrane proliferation by poliovirus proteins 2C and 2BC. Biochem Biophys Res Commun 206:64–76 [CrossRef]
    [Google Scholar]
  4. Andino R., Rieckhof G. E., Achacoso P. L., Baltimore D. 1993; Poliovirus RNA synthesis utilizes an RNP complex formed around the 5′-end of viral RNA. EMBO J 12:3587–3598
    [Google Scholar]
  5. Argos P., Kamer G., Nicklin M. J., Wimmer E. 1984; Similarity in gene organization and homology between proteins of animal picornaviruses and a plant comovirus suggest common ancestry of these virus families. Nucleic Acids Res 12:7251–7267 [CrossRef]
    [Google Scholar]
  6. Banerjee R., Echeverri A., Dasgupta A. 1997; Poliovirus-encoded 2C polypeptide specifically binds to the 3′-terminal sequences of viral negative-strand RNA. J Virol 71:9570–9578
    [Google Scholar]
  7. Banerjee R., Weidman M. K., Echeverri A., Kundu P., Dasgupta A. 2004; Regulation of poliovirus 3C protease by the 2C polypeptide. J Virol 78:9243–9256 [CrossRef]
    [Google Scholar]
  8. Brown K. M., Chu C. Y., Rana T. M. 2005; Target accessibility dictates the potency of human RISC. Nat Struct Mol Biol 12:469–470 [CrossRef]
    [Google Scholar]
  9. Cann A. J. 2005; Genomes. In Principles of Molecular Virology . , 4th edn. pp 78–79 San Diego, CA: Elsevier Academic Press;
  10. Christian P., Carstens E., Domier L., Johnson J., Johnson K., Nakashima N., Scotti P., van der Wilk F. 2005; Family Picornaviridae ; genus Enterovirus . In Virus Taxonomy: Eighth Report of the International Committee on Taxonomy of Viruses pp 757–763 Edited by Fauquet C. M., Mayo M. A., Maniloff J., Desselberger U., Ball L. A. San Diego, CA: Elsevier Academic Press;
    [Google Scholar]
  11. Dave R. S., Pomerantz R. J. 2003; RNA interference: on the road to an alternate therapeutic strategy!. Rev Med Virol 13:373–385 [CrossRef]
    [Google Scholar]
  12. Du Q., Thonberg H., Wang J., Wahlestedt C., Liang Z. 2005; A systematic analysis of the silencing effects of an active siRNA at all single-nucleotide mismatched target sites. Nucleic Acids Res 33:1671–1677 [CrossRef]
    [Google Scholar]
  13. Dykxhoorn D. M., Novina C. D., Sharp P. A. 2003; Killing the messenger: short RNAs that silence gene expression. Nat Rev Mol Cell Biol 4:457–467 [CrossRef]
    [Google Scholar]
  14. Dykxhoorn D. M., Palliser D., Lieberman J. 2006; The silent treatment: siRNAs as small molecule drugs. Gene Ther 13:541–552 [CrossRef]
    [Google Scholar]
  15. Elbashir S. M., Harborth J., Lendeckel W., Yalcin A., Weber K., Tuschl T. 2001; Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498 [CrossRef]
    [Google Scholar]
  16. Gerber K., Wimmer E., Paul A. V. 2001; Biochemical and genetic studies of the initiation of human rhinovirus 2 RNA replication: identification of a cis -replicating element in the coding sequence of 2A(pro). J Virol 75:10979–10990 [CrossRef]
    [Google Scholar]
  17. Gitlin L., Karelsky S., Andino R. 2002; Short interfering RNA confers intracellular antiviral immunity in human cells. Nature 418:430–434 [CrossRef]
    [Google Scholar]
  18. Gitlin L., Stone J. K., Andino R. 2005; Poliovirus escape from RNA interference: short interfering RNA-target recognition and implications for therapeutic approaches. J Virol 79:1027–1035 [CrossRef]
    [Google Scholar]
  19. Goodfellow I., Chaudhry Y., Richardson A., Meredith J., Almond J. W., Barclay W., Evans D. J. 2000; Identification of a cis -acting replication element within the poliovirus coding region. J Virol 74:4590–4600 [CrossRef]
    [Google Scholar]
  20. Herold J., Andino R. 2000; Poliovirus requires a precise 5′ end for efficient positive-strand RNA synthesis. J Virol 74:6394–6400 [CrossRef]
    [Google Scholar]
  21. Johnson D. C. 2006; Silencing herpes simplex virus with a vaginal microbicide. N Engl J Med 354:970–971 [CrossRef]
    [Google Scholar]
  22. Joo C. H., Ahn J., Seo I., Kim Y. K., Kim D., Hong H., Lee H. 2005; Characterization of nonpolio enteroviruses recovered from patients with aseptic meningitis in Korea. Intervirology 48:97–103 [CrossRef]
    [Google Scholar]
  23. Leonard J. N., Schaffer D. V. 2006; Antiviral RNAi therapy: emerging approaches for hitting a moving target. Gene Ther 13:532–540 [CrossRef]
    [Google Scholar]
  24. Li J. P., Baltimore D. 1988; Isolation of poliovirus 2C mutants defective in viral RNA synthesis. J Virol 62:4016–4021
    [Google Scholar]
  25. Li J. P., Baltimore D. 1990; An intragenic revertant of a poliovirus 2C mutant has an uncoating defect. J Virol 64:1102–1107
    [Google Scholar]
  26. Merl S., Michaelis C., Jaschke B., Vorpahl M., Seidl S., Wessely R. 2005; Targeting 2A protease by RNA interference attenuates coxsackieviral cytopathogenicity and promotes survival in highly susceptible mice. Circulation 111:1583–1592 [CrossRef]
    [Google Scholar]
  27. Mirzayan C., Wimmer E. 1992; Genetic analysis of an NTP-binding motif in poliovirus polypeptide 2C. Virology 189:547–555 [CrossRef]
    [Google Scholar]
  28. Pallansch M. A., Roos R. P. 2001; Enteroviruses: polioviruses, coxsackieviruses, echoviruses, and newer enteroviruses. In Fields Virology , 4th edn. pp 723–775 Edited by Knipe D. M., Howley P. M. Philadelphia, PA: Lippincott Williams & Wilkins;
    [Google Scholar]
  29. Paul A. V., Rieder E., Kim D. W., van Boom J. H., Wimmer E. 2000; Identification of an RNA hairpin in poliovirus RNA that serves as the primary template in the in vitro uridylylation of VPg. J Virol 74:10359–10370 [CrossRef]
    [Google Scholar]
  30. Rueckert R. R. 1996; Picornaviridae : the viruses and their replication. In Fields Virology , 3rd edn. pp 609–654 Edited by Fields B. N., Knipe D. M., Howley P. M. Philadelphia, PA: Lippincott–Raven;
    [Google Scholar]
  31. Saleh M. C., Van Rij R. P., Andino R. 2004; RNA silencing in viral infections: insights from poliovirus. Virus Res 102:11–17 [CrossRef]
    [Google Scholar]
  32. Schubert S., Grunert H. P., Zeichhardt H., Werk D., Erdmann V. A., Kurreck J. 2005a; Maintaining inhibition: siRNA double expression vectors against coxsackieviral RNAs. J Mol Biol 346:457–465 [CrossRef]
    [Google Scholar]
  33. Schubert S., Grunweller A., Erdmann V. A., Kurreck J. 2005b; Local RNA target structure influences siRNA efficacy: systematic analysis of intentionally designed binding regions. J Mol Biol 348:883–893 [CrossRef]
    [Google Scholar]
  34. Stevenson M. 2003; Dissecting HIV-1 through RNA interference. Nat Rev Immunol 3:851–858 [CrossRef]
    [Google Scholar]
  35. Teterina N. L., Gorbalenya A. E., Egger D., Bienz K., Ehrenfeld E. 1997; Poliovirus 2C protein determinants of membrane binding and rearrangements in mammalian cells. J Virol 71:8962–8972
    [Google Scholar]
  36. Uprichard S. L., Boyd B., Althage A., Chisari F. V. 2005; Clearance of hepatitis B virus from the liver of transgenic mice by short hairpin RNAs. Proc Natl Acad Sci U S A 102:773–778 [CrossRef]
    [Google Scholar]
  37. Vance L. M., Moscufo N., Chow M., Heinz B. A. 1997; Poliovirus 2C region functions during encapsidation of viral RNA. J Virol 71:8759–8765
    [Google Scholar]
  38. van Ooij M. J., Vogt D. A., Paul A., Castro C., Kuijpers J., van Kuppeveld F. J., Cameron C. E., Wimmer E., Andino R., Melchers W. J. 2006; Structural and functional characterization of the coxsackievirus B3 CRE(2C): role of CRE(2C) in negative- and positive-strand RNA synthesis. J Gen Virol 87:103–113 [CrossRef]
    [Google Scholar]
  39. Westerhout E. M., Ooms M., Vink M., Das A. T., Berkhout B. 2005; HIV-1 can escape from RNA interference by evolving an alternative structure in its RNA genome. Nucleic Acids Res 33:796–804 [CrossRef]
    [Google Scholar]
  40. Yang Y., Rijnbrand R., McKnight K. L., Wimmer E., Paul A., Martin A., Lemon S. M. 2002; Sequence requirements for viral RNA replication and VPg uridylylation directed by the internal cis -acting replication element ( cre ) of human rhinovirus type 14. J Virol 76:7485–7494 [CrossRef]
    [Google Scholar]
  41. Yuan J., Cheung P. K., Zhang H. M., Chau D., Yang D. 2005; Inhibition of coxsackievirus B3 replication by small interfering RNAs requires perfect sequence match in the central region of the viral positive strand. J Virol 79:2151–2159 [CrossRef]
    [Google Scholar]
  42. Zamore P. D., Tuschl T., Sharp P. A., Bartel D. P. 2000; RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101:25–33 [CrossRef]
    [Google Scholar]
  43. Zuker M. 2003; Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82633-0
Loading
/content/journal/jgv/10.1099/vir.0.82633-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error