1887

Abstract

Murine cytomegalovirus (MCMV) is a widely used model for human cytomegalovirus (HCMV) and has facilitated many important discoveries about the biology of CMVs. Most of these studies are conducted using the laboratory MCMV strains Smith and K181. However, wild-derived isolates of MCMV, like HCMV clinical isolates, exhibit genetic variation from laboratory strains, particularly at the ends of their genomes in areas containing known or putative immune-evasion and tropism genes. This study analysed the nucleotide sequence of the region, within the gene family, of a number of laboratory and wild-derived MCMV isolates, and found a large degree of variation in both the sequence and arrangement of genes. A new open reading frame (ORF), designated , was found to be present in a number of wild isolates of MCMV in place of . Two distinct isolates, W8 and W8211, were found to possess both and . Both and had early transcription kinetics and the encoded proteins could be detected on the cell surface, consistent with a possible role in immune evasion through binding to host-cell proteins. These data show that gene duplication and sequence variation occur within different isolates of MCMV found in the wild. As this variation among strains may alter the function of genes, these findings should be considered when analysing gene function or host–virus interactions in laboratory models.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82623-0
2007-03-01
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/3/758.html?itemId=/content/journal/jgv/10.1099/vir.0.82623-0&mimeType=html&fmt=ahah

References

  1. Alcami, A. & Koszinowski, U. H. ( 2000; ). Viral mechanisms of immune evasion. Immunol Today 21, 447–455.[CrossRef]
    [Google Scholar]
  2. Arase, H., Mocarski, E. S., Campbell, A. E., Hill, A. B. & Lanier, L. L. ( 2002; ). Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science 296, 1323–1326.[CrossRef]
    [Google Scholar]
  3. Arav-Boger, R., Zong, J. C. & Foster, C. B. ( 2005; ). Loss of linkage disequilibrium and accelerated protein divergence in duplicated cytomegalovirus chemokine genes. Virus Genes 31, 65–72.[CrossRef]
    [Google Scholar]
  4. Bendtsen, J. D., Nielsen, H., von Heijne, G. & Brunak, S. ( 2004; ). Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340, 783–795.[CrossRef]
    [Google Scholar]
  5. Boname, J. M. & Chantler, J. K. ( 1992; ). Characterization of a strain of murine cytomegalovirus which fails to grow in the salivary glands of mice. J Gen Virol 73, 2021–2029.[CrossRef]
    [Google Scholar]
  6. Booth, T. W., Scalzo, A. A., Carrello, C., Lyons, P. A., Farrell, H. E., Singleton, G. R. & Shellam, G. R. ( 1993; ). Molecular and biological characterization of new strains of murine cytomegalovirus isolated from wild mice. Arch Virol 132, 209–220.[CrossRef]
    [Google Scholar]
  7. Brocchieri, L., Kledal, T. N., Karlin, S. & Mocarski, E. S. ( 2005; ). Predicting coding potential from genome sequence: application to betaherpesviruses infecting rats and mice. J Virol 79, 7570–7596.[CrossRef]
    [Google Scholar]
  8. Brown, M. G., Dokun, A. O., Heusel, J. W., Smith, H. R., Beckman, D. L., Blattenberger, E. A., Dubbelde, C. E., Stone, L. R., Scalzo, A. A. & Yokoyama, W. M. ( 2001; ). Vital involvement of a natural killer cell activation receptor in resistance to viral infection. Science 292, 934–937.[CrossRef]
    [Google Scholar]
  9. Bubic, I., Wagner, M., Krmpotic, A., Saulig, T., Kim, S., Yokoyama, W. M., Jonjic, S. & Koszinowski, U. H. ( 2004; ). Gain of virulence caused by loss of a gene in murine cytomegalovirus. J Virol 78, 7536–7544.[CrossRef]
    [Google Scholar]
  10. Chalmer, J. E., Mackenzie, J. S. & Stanley, N. F. ( 1977; ). Resistance to murine cytomegalovirus linked to the major histocompatibility complex of the mouse. J Gen Virol 37, 107–114.[CrossRef]
    [Google Scholar]
  11. Chee, M. S., Bankier, A. T., Beck, S., Bohni, R., Brown, C. M., Cerny, R., Horsnell, T., Hutchison, C. A., III, Kouzarides, T. & other authors ( 1990; ). Analysis of the protein-coding content of the sequence of human cytomegalovirus strain AD169. Curr Top Microbiol Immunol 154, 125–169.
    [Google Scholar]
  12. Dambaugh, T. R. & Kieff, E. ( 1982; ). Identification and nucleotide sequences of two similar tandem direct repeats in Epstein–Barr virus DNA. J Virol 44, 823–833.
    [Google Scholar]
  13. Davis, C. L., Field, D., Metzgar, D., Saiz, R., Morin, P. A., Smith, I. L., Spector, S. A. & Wills, C. ( 1999; ). Numerous length polymorphisms at short tandem repeats in human cytomegalovirus. J Virol 73, 6265–6270.
    [Google Scholar]
  14. Ebeling, A., Keil, G. M., Knust, E. & Koszinowski, U. H. ( 1983; ). Molecular cloning and physical mapping of murine cytomegalovirus DNA. J Virol 47, 421–433.
    [Google Scholar]
  15. Farrell, H. E. & Shellam, G. R. ( 1989; ). Immunoblot analysis of the antibody response to murine cytomegalovirus in genetically resistant and susceptible mice. J Gen Virol 70, 2573–2586.[CrossRef]
    [Google Scholar]
  16. French, A. R., Pingel, J. T., Wagner, M., Bubic, I., Yang, L., Kim, S., Koszinowski, U., Jonjic, S. & Yokoyama, W. M. ( 2004; ). Escape of mutant double-stranded DNA virus from innate immune control. Immunity 20, 747–756.[CrossRef]
    [Google Scholar]
  17. Frohman, M. A., Dush, M. K. & Martin, G. R. ( 1988; ). Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci U S A 85, 8998–9002.[CrossRef]
    [Google Scholar]
  18. Hall, T. A. ( 1999; ). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41, 95–98.
    [Google Scholar]
  19. Hengel, H., Brune, W. & Koszinowski, U. H. ( 1998; ). Immune evasion by cytomegalovirus – survival strategies of a highly adapted opportunist. Trends Microbiol 6, 190–197.[CrossRef]
    [Google Scholar]
  20. Hengel, H., Reusch, U., Gutermann, A., Ziegler, H., Jonjic, S., Lucin, P. & Koszinowski, U. H. ( 1999; ). Cytomegaloviral control of MHC class I function in the mouse. Immunol Rev 168, 167–176.[CrossRef]
    [Google Scholar]
  21. Ho, M. ( 1991; ). Cytomegalovirus Biology and Infection, 2nd edn. New York: Plenum Medical Book Company.
  22. Holtappels, R., Thomas, D., Podlech, J., Geginat, G., Steffens, H.-P. & Reddehase, M. J. ( 2000a; ). The putative natural killer decoy early gene m04 (gp34) of murine cytomegalovirus encodes an antigenic peptide recognized by protective antiviral CD8 T cells. J Virol 74, 1871–1884.[CrossRef]
    [Google Scholar]
  23. Holtappels, R., Thomas, D. & Reddehase, M. J. ( 2000b; ). Identification of a Kd-restricted antigenic peptide encoded by murine cytomegalovirus early gene M84. J Gen Virol 81, 3037–3042.
    [Google Scholar]
  24. Hudson, J. B., Walker, D. G. & Altamirano, M. ( 1988; ). Analysis in vitro of two biologically distinct strains of murine cytomegalovirus. Arch Virol 102, 289–295.[CrossRef]
    [Google Scholar]
  25. Kavanagh, D. G., Koszinowski, U. H. & Hill, A. B. ( 2001; ). The murine cytomegalovirus immune evasion protein m4/gp34 forms biochemically distinct complexes with class I MHC at the cell surface and in a pre-Golgi compartment. J Immunol 167, 3894–3902.[CrossRef]
    [Google Scholar]
  26. Kleijnen, M. F., Huppa, J. B., Lucin, P., Mukherjee, S., Farrell, H., Campbell, A. E., Koszinowski, U. H., Hill, A. B. & Ploegh, H. L. ( 1997; ). A mouse cytomegalovirus glycoprotein, gp34, forms a complex with folded class I MHC molecules in the ER which is not retained but is transported to the cell surface. EMBO J 16, 685–694.[CrossRef]
    [Google Scholar]
  27. Kozak, M. ( 1986; ). Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44, 283–292.[CrossRef]
    [Google Scholar]
  28. Lesniewski, M., Das, S., Skomorovska-Prokvolit, Y., Wang, F.-Z. & Pellett, P. E. ( 2006; ). Primate cytomegalovirus US12 gene family: a distinct and diverse clade of seven-transmembrane proteins. Virology 354, 286–298.[CrossRef]
    [Google Scholar]
  29. Lu, X., Kavanagh, D. G. & Hill, A. B. ( 2006; ). Cellular and molecular requirements for association of the murine cytomegalovirus protein m4/gp34 with major histocompatibility complex class I molecules. J Virol 80, 6048–6055.[CrossRef]
    [Google Scholar]
  30. Lyons, P. A., Allan, J. E., Carrello, C., Shellam, G. R. & Scalzo, A. A. ( 1996; ). Effect of natural sequence variation at the H-2Ld-restricted CD8+ T cell epitope of the murine cytomegalovirus ie1-encoded pp89 on T cell recognition. J Gen Virol 77, 2615–2623.[CrossRef]
    [Google Scholar]
  31. Misra, V. & Hudson, J. B. ( 1980; ). Minor base sequence differences between the genomes of two strains of murine cytomegalovirus differing in virulence. Arch Virol 64, 1–8.[CrossRef]
    [Google Scholar]
  32. Nielsen, H. & Krogh, A. ( 1998; ). Prediction of signal peptides and signal anchors by a hidden Markov model. Proc Int Conf Intell Syst Mol Biol 6, 122–130.
    [Google Scholar]
  33. Nielsen, H., Engelbrecht, J., Brunak, S. & von Heijne, G. ( 1997; ). Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10, 1–6.[CrossRef]
    [Google Scholar]
  34. Oliveira, S. A., Park, S.-H., Lee, P., Bendelac, A. & Shenk, T. E. ( 2002; ). Murine cytomegalovirus m02 gene family protects against natural killer cell-mediated immune surveillance. J Virol 76, 885–894.[CrossRef]
    [Google Scholar]
  35. Pear, W. S., Miller, J. P., Xu, L., Pui, J. C., Soffer, B., Quackenbush, R. C., Pendergast, A. M., Bronson, R., Aster, J. C. & other authors ( 1998; ). Efficient and rapid induction of a chronic myelogenous leukemia-like myeloproliferative disease in mice receiving P210 bcr/abl-transduced bone marrow. Blood 92, 3780–3792.
    [Google Scholar]
  36. Pignatelli, S., Dal Monte, P., Rossini, G. & Landini, M. P. ( 2004; ). Genetic polymorphisms among human cytomegalovirus (HCMV) wild-type strains. Rev Med Virol 14, 383–410.[CrossRef]
    [Google Scholar]
  37. Rawlinson, W. D., Farrell, H. E. & Barrell, B. G. ( 1996; ). Analysis of the complete DNA sequence of murine cytomegalovirus. J Virol 70, 8833–8849.
    [Google Scholar]
  38. Reusch, U., Muranyi, W., Lucin, P., Burgert, H. G., Hengel, H. & Koszinowski, U. H. ( 1999; ). A cytomegalovirus glycoprotein re-routes MHC class I complexes to lysosomes for degradation. EMBO J 18, 1081–1091.[CrossRef]
    [Google Scholar]
  39. Sahagun-Ruiz, A., Sierra-Honigmann, A. M., Krause, P. & Murphy, P. M. ( 2004; ). Simian cytomegalovirus encodes five rapidly evolving chemokine receptor homologues. Virus Genes 28, 71–83.[CrossRef]
    [Google Scholar]
  40. Scalzo, A. A., Fitzgerald, N. A., Simmons, A., La Vista, A. B. & Shellam, G. R. ( 1990; ). Cmv-1, a genetic locus that controls murine cytomegalovirus replication in the spleen. J Exp Med 171, 1469–1483.[CrossRef]
    [Google Scholar]
  41. Scalzo, A. A., Fitzgerald, N. A., Wallace, C. R., Gibbons, A. E., Smart, Y. C., Burton, R. C. & Shellam, G. R. ( 1992; ). The effect of the Cmv-1 resistance gene, which is linked to the natural killer cell gene complex, is mediated by natural killer cells. J Immunol 149, 581–589.
    [Google Scholar]
  42. Smith, H. R., Heusel, J. W., Mehta, I. K., Kim, S., Dorner, B. G., Naidenko, O. V., Iizuka, K., Furukawa, H., Beckman, D. L. & other authors ( 2002; ). Recognition of a virus-encoded ligand by a natural killer cell activation receptor. Proc Natl Acad Sci U S A 99, 8826–8831.[CrossRef]
    [Google Scholar]
  43. Smith, L. M., Shellam, G. R. & Redwood, A. J. ( 2006; ). Genes of murine cytomegalovirus exist as a number of distinct genotypes. Virology 352, 450–465.[CrossRef]
    [Google Scholar]
  44. Tusnady, G. E. & Simon, I. ( 1998; ). Principles governing amino acid composition of integral membrane proteins: application to topology prediction. J Mol Biol 283, 489–506.[CrossRef]
    [Google Scholar]
  45. Tusnady, G. E. & Simon, I. ( 2001; ). The hmmtop transmembrane topology prediction server. Bioinformatics 17, 849–850.[CrossRef]
    [Google Scholar]
  46. Voigt, V., Forbes, C. A., Tonkin, J. N., Degli-Esposti, M. A., Smith, H. R., Yokoyama, W. M. & Scalzo, A. A. ( 2003; ). Murine cytomegalovirus m157 mutation and variation leads to immune evasion of natural killer cells. Proc Natl Acad Sci U S A 100, 13483–13488.[CrossRef]
    [Google Scholar]
  47. Xu, J., Lyons, P. A., Carter, M. D., Booth, T. W., Davis-Poynter, N. J., Shellam, G. R. & Scalzo, A. A. ( 1996; ). Assessment of antigenicity and genetic variation of glycoprotein B of murine cytomegalovirus. J Gen Virol 77, 49–59.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82623-0
Loading
/content/journal/jgv/10.1099/vir.0.82623-0
Loading

Data & Media loading...

Supplements

vol. , part 3, pp. 758 – 769

A. J. Corbett, C. A. Forbes, D. Moro and A. A. Scalzo

Primers used for RT-PCR analysis of , and [ PDF] (81 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error