1887

Abstract

Rotavirus non-structural protein (NSP) 4 can induce aqueous secretion in the gastrointestinal tract of neonatal mice through activation of an age- and Ca-dependent plasma membrane anion permeability. Accumulating evidence suggests that nitric oxide (NO) plays a role in the modulation of aqueous secretion and the barrier function of intestinal cells. This study investigated transcriptional changes in inducible NO synthase (iNOS), an enzyme responsible for NO production, after rotavirus infection in mice and after treatment of intestinal cells with NSP4. Diarrhoea was observed in 5-day-old CD-1 mice from days 1 to 3 after inoculation with 10 focus-forming units of different rotavirus strains. Ileal iNOS mRNA expression was induced as early as 6 h post-inoculation, before the onset of clinical diarrhoea in infected mice, and was upregulated during the course of rotavirus-induced diarrhoea. treatment of ilea excised from CD-1 suckling mice with NSP4 resulted in upregulation of ileal iNOS mRNA expression within 4 h. Furthermore, NSP4 was able to induce iNOS expression and NO production in murine peritoneal macrophages and RAW264.7 cells. The specificity of NSP4 inducibility was confirmed by the inhibitory effect of anti-NSP4 serum. Using a series of truncated NSP4s, the domain responsible for iNOS induction in macrophages was mapped to the reported enterotoxin domain, aa 109–135. Thus, rotavirus infection induces ileal iNOS expression and rotavirus NSP4 also induces iNOS expression in the ileum and macrophages. Together, these findings suggest that NO plays a role in rotavirus-induced diarrhoea.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82618-0
2007-07-01
2019-11-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/7/2064.html?itemId=/content/journal/jgv/10.1099/vir.0.82618-0&mimeType=html&fmt=ahah

References

  1. Alexopoulou, L., Holt, A. C., Medzhitov, R. & Flavell, R. A. ( 2001; ). Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 413, 732–738.[CrossRef]
    [Google Scholar]
  2. Ball, J. M., Tian, P., Zeng, C. Q.-Y., Morris, A. P. & Estes, M. K. ( 1996; ). Age-dependent diarrhea induced by a rotaviral nonstructural glycoprotein. Science 272, 101–104.[CrossRef]
    [Google Scholar]
  3. Bekker, L. G., Freeman, S., Murray, P. J., Ryffel, B. & Kaplan, G. ( 2001; ). TNF-α controls intracellular mycobacterial growth by inducible nitric oxide synthase-dependent and inducible nitric oxide synthase-independent pathways. J Immunol 166, 6728–6734.[CrossRef]
    [Google Scholar]
  4. Borgan, M. A., Mori, Y., Ito, N., Sugiyama, M. & Minamoto, N. ( 2003; ). Antigenic analysis of nonstructural protein (NSP) 4 of avian rotavirus PO-13 strain. Microbiol Immunol 47, 661–668.[CrossRef]
    [Google Scholar]
  5. Boshuizen, J. A., Reimerink, J. H. J., Male, A. M., Van Ham, V. J. J., Koopmans, M. P. G., Büller, H. A., Dekker, J. & Einerhand, A. W. C. ( 2003; ). Changes in small intestinal homeostasis, morphology, and gene expression during rotavirus infection of infant mice. J Virol 77, 13005–13016.[CrossRef]
    [Google Scholar]
  6. Bult, H., Boeckxstaens, G. E., Pelckmans, P. A., Jordaens, F. H., Van Maercke, Y. M. & Herman, A. G. ( 1990; ). Nitric oxide as an inhibitory non-adrenergic non-cholinergic neurotransmitter. Nature 345, 346–347.[CrossRef]
    [Google Scholar]
  7. Carpenter, L., Cordery, D. & Biden, T. J. ( 2001; ). Protein kinase Cδ activation by interleukin-1β stabilizes inducible nitric oxide synthase mRNA in pancreatic β-cells. J Biol Chem 276, 5368–5374.[CrossRef]
    [Google Scholar]
  8. Chen, B. C., Chou, C. & Lin, W. ( 1998; ). Pyrimidinoceptor-mediated potentiation of inducible nitric-oxide synthase induction in J774 macrophages. J Biol Chem 273, 29754–29763.[CrossRef]
    [Google Scholar]
  9. Davidson, G. P. & Barnes, G. L. ( 1979; ). Structural and functional abnormalities of the small intestine in infants and young children with rotavirus enteritis. Acta Paediatr Scand 68, 181–186.[CrossRef]
    [Google Scholar]
  10. Dickman, K. G., Hempson, S. J., Anderson, J., Lippe, S., Zhao, L., Burakoff, R. & Shaw, R. D. ( 2000; ). Rotavirus alters paracellular permeability and energy metabolism in Caco-2 cells. Am J Physiol Gastrointest Liver Physiol 279, G757–G766.
    [Google Scholar]
  11. Dong, Y., Zeng, C. Q.-Y., Ball, J. M., Estes, M. K. & Morris, A. P. ( 1997; ). The rotavirus enterotoxin NSP4 mobilizes intracellular calcium in human intestinal cells by stimulating phospholipase C-mediated inositol 1,4,5-trisphosphate production. Proc Natl Acad Sci U S A 94, 3960–3965.[CrossRef]
    [Google Scholar]
  12. Fasano, A. ( 2002; ). Toxins and the gut: role in human disease. Gut 50, (Suppl. III), iii9–iii14.
    [Google Scholar]
  13. Green, L. C., Wagner, D. A., Glogowski, J., Skipper, P. L., Wishnok, J. S. & Tannenbaum, S. R. ( 1982; ). Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem 126, 131–138.[CrossRef]
    [Google Scholar]
  14. Greenberg, H. B., Clark, H. F. & Offit, P. A. ( 1994; ). Rotavirus pathology and pathophysiology. Curr Top Microbiol Immunol 185, 255–283.
    [Google Scholar]
  15. Groene, W. S. & Shaw, R. D. ( 1992; ). Psoralen preparation of antigenically intact noninfectious rotavirus particles. J Virol Methods 38, 93–102.[CrossRef]
    [Google Scholar]
  16. Halaihel, N., Lievin, V., Ball, J. M., Estes, M. K., Alvarado, F. & Vasseur, M. ( 2000; ). Direct inhibitory effect of rotavirus NSP4(114–135) peptide on the Na+-d-glucose symporter of rabbit intestinal brush border membrane. J Virol 74, 9464–9470.[CrossRef]
    [Google Scholar]
  17. Hoffman, R. A., Zhang, G., Nüssler, N. C., Gleixner, S. L., Ford, H. R., Simmons, R. L. & Watkins, S. C. ( 1997; ). Constitutive expression of inducible nitric oxide synthase in the mouse ileal mucosa. Am J Physiol Gastrointest Liver Physiol 272, G383–G392.
    [Google Scholar]
  18. Holloway, G. & Coulson, B. S. ( 2006; ). Rotavirus activates JNK and p38 signaling pathways in intestinal cells, leading to AP-1-driven transcriptional responses and enhanced virus replication. J Virol 80, 10624–10633.[CrossRef]
    [Google Scholar]
  19. Huang, H., Schroeder, F., Zeng, C., Estes, M. K., Schoer, J. K. & Ball, J. M. ( 2001; ). Membrane interactions of a novel viral enterotoxin: rotavirus nonstructural glycoprotein NSP4. Biochemistry 40, 4169–4180.[CrossRef]
    [Google Scholar]
  20. Izzo, A. A., Mascolo, N. & Capasso, F. ( 1998; ). Nitric oxide as a modulator of intestinal water and electrolyte transport. Dig Dis Sci 43, 1605–1620.[CrossRef]
    [Google Scholar]
  21. Jourdan, N., Brunet, J. P., Sapin, C., Blais, A., Cotte-Laffitte, J., Forestier, F., Quero, A. M., Trugnan, G. & Servin, L. A. ( 1998; ). Rotavirus infection reduces sucrase-isomaltase expression in human intestinal epithelial cells by perturbing protein targeting and organization of microvillar cytoskeleton. J Virol 72, 7228–7236.
    [Google Scholar]
  22. Jung, H. C., Eckmann, L., Yang, S. K., Panja, A., Fierer, J., Morzycka-Wroblewska, E. & Kagnoff, M. F. ( 1995; ). A distinct array of proinflammatory cytokines is expressed in human colon epithelial cells in response to bacterial invasion. J Clin Invest 95, 55–65.[CrossRef]
    [Google Scholar]
  23. Kapikian, A. Z. & Chanock, R. M. ( 1990; ). Rotaviruses. In Virology, 2nd edn, pp. 1353–1404. Edited by B. N. Fields, D. M. Knipe, M. S. Hirsch, L. M. Joseph, T. P. Monath & B. Roizman. New York: Raven.
  24. Korhonen, R., Korpela, R., Saxelin, M., Mäki, M., Kankaanranta, H. & Moilanen, E. ( 2001; ). Induction of nitric oxide synthesis by probiotic Lactobacillus rhamnosus GG in J774 macrophages and human T84 intestinal epithelial cells. Inflammation 25, 223–232.[CrossRef]
    [Google Scholar]
  25. Kubes, P. ( 1992; ). Nitric oxide modulates epithelial permeability in the feline small intestine. Am J Physiol 262, G1138–G1142.
    [Google Scholar]
  26. Londrigan, S. L., Graham, K. L., Takada, Y., Halasz, P. & Coulson, B. S. ( 2003; ). Monkey rotavirus binding to α2β1 integrin requires the α2 I domain and is facilitated by the homologous β1 subunit. J Virol 77, 9486–9501.[CrossRef]
    [Google Scholar]
  27. Lundgren, O., Peregrin, A. T., Persson, K., Kordasti, S., Uhnoo, I. & Svensson, L. ( 2000; ). Role of the enteric nervous system in the fluid and electrolytes secretion of rotavirus diarrhea. Science 287, 491–495.[CrossRef]
    [Google Scholar]
  28. MacMicking, J., Xie, Q. W. & Nathan, C. ( 1997; ). Nitric oxide and macrophage function. Annu Rev Immunol 15, 323–350.[CrossRef]
    [Google Scholar]
  29. MacNaughton, W. K. ( 1993; ). Nitric oxide-donating compounds stimulate electrolyte transport in the guinea pig intestine in vitro.. Life Sci 53, 585–593.[CrossRef]
    [Google Scholar]
  30. McNeal, M. M., Rae, M. N., Bean, J. A. & Ward, R. L. ( 1999; ). Antibody-dependent and -independent protection following intranasal immunization of mice with rotavirus particles. J Virol 73, 7565–7573.
    [Google Scholar]
  31. Minamoto, N., Oki, K., Tomita, M., Kinjo, T. & Suzuki, Y. ( 1988; ). Isolation and characterization of rotavirus from feral pigeon in mammalian cell cultures. Epidemiol Infect 100, 481–492.[CrossRef]
    [Google Scholar]
  32. Mori, Y., Sugiyama, M., Takayama, M., Atoji, Y., Masegi, T. & Minamoto, N. ( 2001; ). Avian-to-mammal transmission of an avian rotavirus: analysis of its pathogenicity in a heterologous mouse model. Virology 288, 63–70.[CrossRef]
    [Google Scholar]
  33. Mori, Y., Borgan, M. A., Ito, N., Sugiyama, M. & Minamoto, N. ( 2002; ). Diarrhea-inducing activity in suckling mice of avian rotavirus NSP4 glycoproteins, which differ greatly from mammalian rotavirus NSP4 glycoproteins in deduced amino acid sequences. J Virol 76, 5829–5834.[CrossRef]
    [Google Scholar]
  34. Morris, A. P., Scott, J. K., Ball, J. M., Zeng, C. Q., O'Neal, W. K. & Estes, M. K. ( 1999; ). NSP4 elicits age-dependent diarrhea and Ca2+-mediated I influx into intestinal crypts of CF mice. Am J Physiol 277, G431–G444.
    [Google Scholar]
  35. Nathan, C. & Xie, Q.-W. ( 1994; ). Nitric oxide synthases: roles, tolls, and controls. Cell 78, 915–918.[CrossRef]
    [Google Scholar]
  36. Osborne, M. P., Haddon, S. J., Worton, K. J., Spencer, A. J., Starkey, W. G., Thornber, D. & Stephen, J. ( 1991; ). Rotavirus-induced changes in microcirculation of intestinal villi of neonatal mice in relation to the induction and persistence of diarrhea. J Pediatr Gastroenterol Nutr 12, 111–120.[CrossRef]
    [Google Scholar]
  37. Perrin, P., Tino De Franco, M., Jallet, C., Fouque, F., Morgeaux, S., Tordo, N. & Colle, J. H. ( 1996; ). The antigen-specific cell-mediated immune response in mice is suppressed by infection with pathogenic lyssaviruses. Res Virol 147, 289–299.[CrossRef]
    [Google Scholar]
  38. Rhee, S. J., Wilson, K. T., Gobert, A. P., Nataro, J. P. & Fasano, A. ( 2001; ). The enterotoxic activity of Shigella enterotoxin 1 (ShET1) is mediated by inducible nitric oxide synthase activity. J Pediatr Gastroenterol Nutr 33, 400–416.[CrossRef]
    [Google Scholar]
  39. Resta-Lenert, S. & Barrett, K. E. ( 2002; ). Enteroinvasive bacteria alter barrier and transport properties of human intestinal epithelium: role of iNOS and COX-2. Gastroenterology 122, 1070–1087.[CrossRef]
    [Google Scholar]
  40. Rodriguez-Diaz, J., Banasaz, M., Istrate, C., Buesa, J., Lundgren, O., Espinoza, F., Sundqvist, T., Rottenberg, M. & Svensson, L. ( 2006; ). Role of nitric oxide during rotavirus infection. J Med Virol 78, 979–985.[CrossRef]
    [Google Scholar]
  41. Rodriguez-Pascual, F., Hausding, M., Ihrig-Biedert, I., Furneaux, H., Levy, A. P., Forstermann, U. & Kleinert, H. ( 2000; ). Complex contribution of the 3′-untranslated region to the expressional regulation of the human inducible nitric-oxide synthase gene. Involvement of the RNA-binding protein HuR. J Biol Chem 275, 26040–26049.[CrossRef]
    [Google Scholar]
  42. Rolfe, V. E. & Milla, P. J. ( 1999; ). Nitric oxide stimulates cyclic guanosine monophosphate production and electrogenic secretion in Caco-2 colonocytes. Clin Sci 96, 165–170.[CrossRef]
    [Google Scholar]
  43. Rollo, E. E., Kumar, K. P., Reich, N. C., Cohen, J., Angel, J., Greenberg, H. B., Sheth, R., Anderson, J., Oh, B. & other authors ( 1999; ). The epithelial cell response to rotavirus infection. J Immunol 163, 4442–4452.
    [Google Scholar]
  44. Salzman, A. L., Eaves-Pyles, T., Linn, S. C., Denenberg, A. G. & Szabó, C. ( 1998; ). Bacterial induction of inducible nitric oxide synthase in cultured human intestinal epithelial cells. Gastroenterology 114, 93–102.[CrossRef]
    [Google Scholar]
  45. Stack, W. A., Filipowicz, B. & Hawkey, C. J. ( 1996; ). Nitric oxide donating compounds stimulate human colonic ion transport in vitro.. Gut 39, 93–99.[CrossRef]
    [Google Scholar]
  46. Turvill, J. L., Mourad, F. H. & Farthing, M. J. ( 1999; ). Proabsorptive and prosecretory roles for nitric oxide in cholera toxin induced secretion. Gut 44, 33–39.[CrossRef]
    [Google Scholar]
  47. Vallance, P. & Charles, I. ( 1998; ). Nitric oxide in sepsis: of mice and men. Sepsis 1, 93–100.[CrossRef]
    [Google Scholar]
  48. Wilson, K. T., Xie, Y., Musch, M. W. & Chang, E. B. ( 1993; ). Sodium nitroprusside stimulates anion secretion and inhibits NaCl absorption in rat colon. J Pharmacol Exp Ther 266, 224–230.
    [Google Scholar]
  49. Xie, Q. W., Cho, H. J., Calaycay, J., Mumford, R. A., Swiderek, K. M., Lee, T. D., Ding, A., Troso, T. & Nathan, C. ( 1992; ). Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science 256, 225–227.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82618-0
Loading
/content/journal/jgv/10.1099/vir.0.82618-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error