Comparative full-length sequence analysis of oncogenic and vaccine (Rispens) strains of Marek's disease virus Free

Abstract

The complete DNA sequence of the Marek's disease virus serotype 1 vaccine strain CVI988 was determined and consists of 178 311 bp with an overall gene organization identical to that of the oncogenic strains. In examining open reading frames (ORFs), nine differ between vaccine and oncogenic strains. A 177 bp insertion was identified in the overlapping genes encoding the Meq, RLORF6 and 23 kDa proteins of CVI988. Three ORFs are predicted to encode truncated proteins. One, designated 49.1, overlaps the gene encoding the large tegument protein UL36 and encodes a severely truncated protein of 34 aa. The others, ORF5.5/ORF75.91 and ORF3.0/78.0, located in the repeat regions (diploid), encode a previously unidentified ORF of 52 aa and a truncated version of the virus-encoded chemokine (vIL-8), respectively. Subtle genetic changes were identified in the two ORFs encoding tegument proteins UL36 and UL49. Only one diploid ORF (ORF6.2/ORF75.6) present in the genomes of the three virulent strains is absent in the CVI988-BAC genome. Seventy non-synonymous amino acid substitutions were identified that could differentiate CVI988-BAC from all three oncogenic strains collectively. Estimates of the non-synonymous to synonymous substitution ratio () indicate that CVI988 ORFs are generally under purifying selection (<1), whereas UL39, UL49, UL50, RLORF6 and RLORF7 (Meq) appear to evolve under relaxed selective constraints. No CVI988 ORF was found to be under positive evolutionary selection (≫1).

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82600-0
2007-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/4/1080.html?itemId=/content/journal/jgv/10.1099/vir.0.82600-0&mimeType=html&fmt=ahah

References

  1. Anderson A. S., Francesconi A., Morgan R. W. 1992; Complete nucleotide sequence of the Marek's disease virus ICP4 gene. Virology 189:657–667 [CrossRef]
    [Google Scholar]
  2. Anobile J. M., Arumugaswami V., Downs D., Czymmek K., Parcells M., Schmidt C. J. 2006; Nuclear localization and dynamic properties of the Marek's disease virus oncogene products Meq and Meq/vIL8. J Virol 80:1160–1166 [CrossRef]
    [Google Scholar]
  3. Besemer J., Borodovsky M. 2005; GeneMark: web software for gene finding in prokaryotes, eukaryotes and viruses. Nucleic Acids Res 33:W451–W454 [CrossRef]
    [Google Scholar]
  4. Blaho J. A., Mitchell C., Roizman B. 1994; An amino acid sequence shared by the herpes simplex virus 1 alpha regulatory proteins 0, 4, 22, and 27 predicts the nucleotidylylation of the UL21, UL31, UL47, and UL49 gene products. J Biol Chem 269:17401–17410
    [Google Scholar]
  5. Calnek B. W. 2001; Pathogenesis of Marek's disease virus infection. Curr Top Microbiol Immunol 255:25–55
    [Google Scholar]
  6. Chang K. S., Lee S. I., Ohashi K., Ibrahim A., Onuma M. 2002a; The detection of the meq gene in chicken infected with Marek's disease virus serotype 1. J Vet Med Sci 64:413–417 [CrossRef]
    [Google Scholar]
  7. Chang K. S., Ohashi K., Onuma M. 2002b; Diversity (polymorphism) of the meq gene in the attenuated Marek's disease virus (MDV) serotype 1 and MDV-transformed cell lines. J Vet Med Sci 64:1097–1101 [CrossRef]
    [Google Scholar]
  8. Chang K. S., Ohashi K., Onuma M. 2002c; Suppression of transcription activity of the MEQ protein of oncogenic Marek's disease virus serotype 1 (MDV1) by L-MEQ of non-oncogenic MDV1. J Vet Med Sci 64:1091–1095 [CrossRef]
    [Google Scholar]
  9. Churchill A. E., Payne L. N., Chubb R. C. 1969; Marek's disease immunization against Marek's disease using a live attenuated virus. Lancet i:610–611
    [Google Scholar]
  10. Cohrs R. J., Gilden D. H., Gomi Y., Yamanishi K., Cohen J. I. 2006; Comparison of virus transcription during lytic infection of the Oka parental and vaccine strains of varicella-zoster virus. J Virol 80:2076–2082 [CrossRef]
    [Google Scholar]
  11. Corpet F. 1988; Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16:10881–10890 [CrossRef]
    [Google Scholar]
  12. Cortes P. L., Cardona C. J. 2004; Pathogenesis of a Marek's disease virus mutant lacking vIL-8 in resistant and susceptible chickens. Avian Dis 48:50–60 [CrossRef]
    [Google Scholar]
  13. Cui X., Lee L. F., Reed W. M., Kung H. J., Reddy S. M. 2004; Marek's disease virus-encoded vIL-8 gene is involved in early cytolytic infection but dispensable for establishment of latency. J Virol 78:4753–4760 [CrossRef]
    [Google Scholar]
  14. Cui X., Lee L. F., Hunt H. D., Reed W. M., Lupiani B., Reddy S. M. 2005; A Marek's disease virus vIL-8 deletion mutant has attenuated virulence and confers protection against challenge with a very virulent plus strain. Avian Dis 49:199–206 [CrossRef]
    [Google Scholar]
  15. Davison F., Nair V. 2005; Use of Marek's disease vaccines: could they be driving the virus to increasing virulence?. Expert Rev Vaccines 4:77–88 [CrossRef]
    [Google Scholar]
  16. Dorange F., El Mehdaoui S., Pichon C., Coursaget P., Vautherot J.-F. 2000; Marek's disease virus (MDV) homologues of herpes simplex virus type 1 UL49 (VP22) and UL48 (VP16) genes: high-level expression and characterization of MDV-1 VP22 and VP16. J Gen Virol 81:2219–2230
    [Google Scholar]
  17. Dorange F., Tischer B. K., Vautherot J. F., Osterrieder N. 2002; Characterization of Marek's disease virus serotype 1 (MDV-1) deletion mutants that lack UL46 to UL49 genes: MDV-1 UL49, encoding VP22, is indispensable for virus growth. J Virol 76:1959–1970 [CrossRef]
    [Google Scholar]
  18. Elliott G., O'Reilly D., O'Hare P. 1999; Identification of phosphorylation sites within the herpes simplex virus tegument protein VP22. J Virol 73:6203–6206
    [Google Scholar]
  19. Fragnet L., Blasco M. A., Klapper W., Rasschaert D. 2003; The RNA subunit of telomerase is encoded by Marek's disease virus. J Virol 77:5985–5996 [CrossRef]
    [Google Scholar]
  20. Gimeno I. M., Witter R. L., Hunt H. D., Reddy S. M., Lee L. F., Silva R. F. 2005; The pp38 gene of Marek's disease virus (MDV) is necessary for cytolytic infection of B cells and maintenance of the transformed state but not for cytolytic infection of the feather follicle epithelium and horizontal spread of MDV. J Virol 79:4545–4549 [CrossRef]
    [Google Scholar]
  21. Gomi Y., Sunamachi H., Mori Y., Nagaike K., Takahashi M., Yamanishi K. 2002; Comparison of the complete DNA sequences of the Oka varicella vaccine and its parental virus. J Virol 76:11447–11459 [CrossRef]
    [Google Scholar]
  22. Gonzales M. J., Dugan J. M., Shafer R. W. 2002; Synonymous-non-synonymous mutation rates between sequences containing ambiguous nucleotides (Syn-SCAN). Bioinformatics 18:886–887 [CrossRef]
    [Google Scholar]
  23. Hong Y., Coussens P. M. 1994; Identification of an immediate-early gene in the Marek's disease virus long internal repeat region which encodes a unique 14-kilodalton polypeptide. J Virol 68:3593–3603
    [Google Scholar]
  24. Jarosinski K. W., Schat K. A. 2007; Multiple alternative splicing to exons II and III of viral interleukin-8 (vIL-8) in the Marek's disease virus genome: the importance of vIL-8 exon I. Virus Genes 34:9–22 [CrossRef]
    [Google Scholar]
  25. Jarosinski K. W., Osterrieder N., Nair V. K., Schat K. A. 2005; Attenuation of Marek's disease virus by deletion of open reading frame RLORF4 but not RLORF5a. J Virol 79:11647–11659 [CrossRef]
    [Google Scholar]
  26. Jones D., Lee L., Liu J.-L., Kung H.-J., Tillotson J. K. 1992; Marek's disease virus encodes a basic-leucine zipper gene resembling the fos/jun oncogenes that is highly expressed in lymphoblastoid tumors. Proc Natl Acad Sci U S A 89:4042–4046 [CrossRef]
    [Google Scholar]
  27. Jons A., Gerdts V., Lange E., Kaden V., Mettenleiter T. C. 1997; Attenuation of dUTPase-deficient pseudorabies virus for the natural host. Vet Microbiol 56:47–54 [CrossRef]
    [Google Scholar]
  28. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp  21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  29. Kaiser P., Hughes S., Bumstead N. 1999; The chicken 9E3/CEF4 CXC chemokine is the avian orthologue of IL8 and maps to chicken chromosome 4 syntenic with genes flanking the mammalian chemokine cluster. Immunogenetics 49:673–684 [CrossRef]
    [Google Scholar]
  30. Kamil J. P., Tischer B. K., Trapp S., Nair V. K., Osterrieder N., Kung H. J. 2005; vLIP, a viral lipase homologue, is a virulence factor of Marek's disease virus. J Virol 79:6984–6996 [CrossRef]
    [Google Scholar]
  31. Katoh K., Kuma K., Toh H., Miyata T. 2005; mafft version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33:511–518 [CrossRef]
    [Google Scholar]
  32. Kattenhorn L. M., Korbel G. A., Kessler B. M., Spooner E., Ploegh H. L. 2005; A deubiquitinating enzyme encoded by HSV-1 belongs to a family of cysteine proteases that is conserved across the family Herpesviridae . Mol Cell 19:547–557 [CrossRef]
    [Google Scholar]
  33. Kay B. K., Williamson M. P., Sudol M. 2000; The importance of being proline: the interaction of proline-rich motifs in signaling proteins with their cognate domains. FASEB J 14:231–241
    [Google Scholar]
  34. Klupp B. G., Fuchs W., Granzow H., Nixdorf R., Mettenleiter T. C. 2002; Pseudorabies virus UL36 tegument protein physically interacts with the UL37 protein. J Virol 76:3065–3071 [CrossRef]
    [Google Scholar]
  35. Koppers-Lalic D., Reits E. A., Ressing M. E., Lipinska A. D., Abele R., Koch J., Marcondes Rezende M., Admiraal P., van Leeuwen D. other authors 2005; Varicelloviruses avoid T cell recognition by UL49.5-mediated inactivation of the transporter associated with antigen processing. Proc Natl Acad Sci U S A 102:5144–5149 [CrossRef]
    [Google Scholar]
  36. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  37. Laurent S., Esnault E., Rasschaert D. 2004; Single-nucleotide polymorphisms in two Marek's disease virus genes ( Meq and gD ): application to a retrospective molecular epidemiology study (1982–1999) in France. J Gen Virol 85:1387–1392 [CrossRef]
    [Google Scholar]
  38. Lee L. F., Wu P., Sui D., Ren D., Kamil J., Kung H. J., Witter R. L. 2000a; The complete unique long sequence and the overall genomic organization of the GA strain of Marek's disease virus. Proc Natl Acad Sci U S A 97:6091–6096 [CrossRef]
    [Google Scholar]
  39. Lee S. I., Takagi M., Ohashi K., Sugimoto C., Onuma M. 2000b; Difference in the meq gene between oncogenic and attenuated strains of Marek's disease virus serotype 1. J Vet Med Sci 62:287–292 [CrossRef]
    [Google Scholar]
  40. Levy A. M., Izumiya Y., Brunovskis P., Xia L., Parcells M. S., Reddy S. M., Lee L., Chen H. W., Kung H. J. 2003; Characterization of the chromosomal binding sites and dimerization partners of the viral oncoprotein Meq in Marek's disease virus-transformed T cells. J Virol 77:12841–12851 [CrossRef]
    [Google Scholar]
  41. Lipinska A. D., Koppers-Lalic D., Rychlowski M., Admiraal P., Rijsewijk F. A., Bienkowska-Szewczyk K., Wiertz E. J. 2006; Bovine herpesvirus 1 UL49.5 protein inhibits the transporter associated with antigen processing despite complex formation with glycoprotein M. J Virol 80:5822–5832 [CrossRef]
    [Google Scholar]
  42. Liu J. L., Kung H. J. 2000; Marek's disease herpesvirus transforming protein MEQ: a c-Jun analogue with an alternative life style. Virus Genes 21:51–64 [CrossRef]
    [Google Scholar]
  43. Liu J. L., Lin S. F., Xia L., Brunovskis P., Li D., Davidson I., Lee L. F., Kung H. J. 1999; MEQ and V-IL8: cellular genes in disguise?. Acta Virol 43:94–101
    [Google Scholar]
  44. Lupiani B., Lee L. F., Reddy S. M. 2001; Protein-coding content of the sequence of Marek's disease virus serotype 1. Curr Top Microbiol Immunol 255:159–190
    [Google Scholar]
  45. Lupiani B., Lee L. F., Cui X., Gimeno I., Anderson A., Morgan R. W., Silva R. F., Witter R. L., Kung H. J., Reddy S. M. 2004; Marek's disease virus-encoded Meq gene is involved in transformation of lymphocytes but is dispensable for replication. Proc Natl Acad Sci U S A 101:11815–11820 [CrossRef]
    [Google Scholar]
  46. McNabb D. S., Courtney R. J. 1992; Analysis of the UL36 open reading frame encoding the large tegument protein (ICP1/2) of herpes simplex virus type 1. J Virol 66:7581–7584
    [Google Scholar]
  47. Nair V. 2005; Evolution of Marek's disease – a paradigm for incessant race between the pathogen and the host. Vet J 170:175–183 [CrossRef]
    [Google Scholar]
  48. Niikura M., Liu H. C., Dodgson J. B., Cheng H. H. 2004; A comprehensive screen for chicken proteins that interact with proteins unique to virulent strains of Marek's disease virus. Poult Sci 83:1117–1123 [CrossRef]
    [Google Scholar]
  49. Niikura M., Dodgson J., Cheng H. 2006; Direct evidence of host genome acquisition by the alphaherpesvirus Marek's disease virus. Arch Virol 151:537–549 [CrossRef]
    [Google Scholar]
  50. Nishiyama Y. 2004; Herpes simplex virus gene products: the accessories reflect her lifestyle well. Rev Med Virol 14:33–46 [CrossRef]
    [Google Scholar]
  51. Osterrieder K., Vautherot J.-F. 2004; The genome content of Marek's disease-like viruses. In Marek's Disease: an Evolving Problem pp  17–31 Edited by Davison F., Nair V. Oxford: Elsevier;
    [Google Scholar]
  52. Pagliusi S. R., Teresa Aguado M. 2004; Efficacy and other milestones for human papillomavirus vaccine introduction. Vaccine 23:569–578 [CrossRef]
    [Google Scholar]
  53. Parcells M. S., Lin S. F., Dienglewicz R. L., Majerciak V., Robinson D. R., Chen H. C., Wu Z., Dubyak G. R., Brunovskis P. other authors 2001; Marek's disease virus (MDV) encodes an interleukin-8 homolog (vIL-8): characterization of the vIL-8 protein and a vIL-8 deletion mutant MDV. J Virol 75:5159–5173 [CrossRef]
    [Google Scholar]
  54. Peng Q., Shirazi Y. 1996a; Characterization of the protein product encoded by a splicing variant of the Marek's disease virus Eco-Q gene (Meq). Virology 226:77–82 [CrossRef]
    [Google Scholar]
  55. Peng Q., Shirazi Y. 1996b; Isolation and characterization of Marek's disease virus (MDV) cDNAs from a MDV-transformed lymphoblastoid cell line: identification of an open reading frame antisense to the MDV Eco-Q protein (Meq). Virology 221:368–374 [CrossRef]
    [Google Scholar]
  56. Peng Q., Zeng M., Bhuiyan Z. A., Ubukata E., Tanaka A., Nonoyama M., Shirazi Y. 1995; Isolation and characterization of Marek's disease virus (MDV) cDNAs mapping to the BamHI-I2, BamHI-Q2, and BamHI-L fragments of the MDV genome from lymphoblastoid cells transformed and persistently infected with MDV. Virology 213:590–599 [CrossRef]
    [Google Scholar]
  57. Petherbridge L., Howes K., Baigent S. J., Sacco M. A., Evans S., Osterrieder N., Nair V. 2003; Replication-competent bacterial artificial chromosomes of Marek's disease virus: novel tools for generation of molecularly defined herpesvirus vaccines. J Virol 77:8712–8718 [CrossRef]
    [Google Scholar]
  58. Phelan A., Elliott G., O'Hare P. 1998; Intercellular delivery of functional p53 by the herpesvirus protein VP22. Nat Biotechnol 16:440–443 [CrossRef]
    [Google Scholar]
  59. Prince A. M. 1996; Prevention of liver cancer and cirrhosis by vaccines. Clin Lab Med 16:493–505
    [Google Scholar]
  60. Qian Z., Brunovskis P., Lee L., Vogt P. K., Kung H. J. 1996; Novel DNA binding specificities of a putative herpesvirus bZIP oncoprotein. J Virol 70:7161–7170
    [Google Scholar]
  61. Rispens B. H., van Vloten H., Mastenbroek N., Maas H. J., Schat K. A. 1972; Control of Marek's disease in the Netherlands. I. Isolation of an avirulent Marek's disease virus (strain CVI 988) and its use in laboratory vaccination trials. Avian Dis 16:108–125 [CrossRef]
    [Google Scholar]
  62. Schaffer A. A., Aravind L., Madden T. L., Shavirin S., Spouge J. L., Wolf Y. I., Koonin E. V., Altschul S. F. 2001; Improving the accuracy of psi-blast protein database searches with composition-based statistics and other refinements. Nucleic Acids Res 29:2994–3005 [CrossRef]
    [Google Scholar]
  63. Schat K. A., Calnek B. W. 1978; Characterizations of an apparently non-oncogenic Marek's disease virus. J Natl Cancer Inst 60:1075–1082
    [Google Scholar]
  64. Schlieker C., Korbel G. A., Kattenhorn L. M., Ploegh H. L. 2005; A deubiquitinating activity is conserved in the large tegument protein of the herpesviridae. J Virol 79:15582–15585 [CrossRef]
    [Google Scholar]
  65. Shamblin C. E., Greene N., Arumugaswami V., Dienglewicz R. L., Parcells M. S. 2004; Comparative analysis of Marek's disease virus (MDV) glycoprotein-, lytic antigen pp38- and transformation antigen Meq-encoding genes: association of meq mutations with MDVs of high virulence. Vet Microbiol 102:147–167 [CrossRef]
    [Google Scholar]
  66. Silva R. F., Lee L. F., Kutish G. F. 2001; The genomic structure of Marek's disease virus. Curr Top Microbiol Immunol 255:143–158
    [Google Scholar]
  67. Spatz S. J., Silva R. F. 2007; Polymorphisms in the repeat long regions of oncogenic and attenuated pathotypes of Marek's disease virus 1. Virus Genes (in press). doi: 10.1007/s11262-006-0024-5
    [Google Scholar]
  68. Staden R., Beal K. F., Bonfield J. K. 2000; The Staden package, 1998. Methods Mol Biol 132:115–130
    [Google Scholar]
  69. Tischer B. K., Schumacher D., Messerle M., Wagner M., Osterrieder N. 2002; The products of the UL10 (gM) and the UL49.5 genes of Marek's disease virus serotype 1 are essential for virus growth in cultured cells. J Gen Virol 83:997–1003
    [Google Scholar]
  70. Trapp S., Parcells M. S., Kamil J. P., Schumacher D., Tischer B. K., Kumar P. M., Nair V. K., Osterrieder N. 2006; A virus-encoded telomerase RNA promotes malignant T cell lymphomagenesis. J Exp Med 203:1307–1317 [CrossRef]
    [Google Scholar]
  71. Tulman E. R., Afonso C. L., Lu Z., Zsak L., Rock D. L., Kutish G. F. 2000; The genome of a very virulent Marek's disease virus. J Virol 74:7980–7988 [CrossRef]
    [Google Scholar]
  72. Vittone V., Diefenbach E., Triffett D., Douglas M. W., Cunningham A. L., Diefenbach R. J. 2005; Determination of interactions between tegument proteins of herpes simplex virus type 1. J Virol 79:9566–9571 [CrossRef]
    [Google Scholar]
  73. Witter R. L. 1997; Increased virulence of Marek's disease virus field isolates. Avian Dis 41:149–163 [CrossRef]
    [Google Scholar]
  74. Witter R. L. 2001a; Marek's disease virus vaccines – past, present and future (chicken vs. virus – a battle of the centuries. In Current Progress on Marek's Disease Research. Proceedings of the 6th International Symposium on Marek's Disease pp  1–9 Edited by Schat K. A., Morgan R. M., Parcells M. S., Spencer J. L. Kennett Square, PA: American Association of Avian Pathologists;
    [Google Scholar]
  75. Witter R. L. 2001b; Protective efficacy of Marek's disease vaccines. Curr Top Microbiol Immunol 255:57–90
    [Google Scholar]
  76. Witter R. L., Nazerian K., Purchase H. G., Burgoyne G. H. 1970; Isolation from turkeys of a cell-associated herpesvirus antigenically related to Marek's disease virus. Am J Vet Res 31:525–538
    [Google Scholar]
  77. Zarrinpar A., Bhattacharyya R. P., Lim W. A. 2003; The structure and function of proline recognition domains. Sci STKE 2003RE8
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82600-0
Loading
/content/journal/jgv/10.1099/vir.0.82600-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed