1887

Abstract

In the present study, the transcription and protein expression of seven genes of infectious laryngotracheitis virus (ILTV) were investigated: UL31 and UL37 possess homologues in all known avian and mammalian herpesviruses, whereas UL46–UL49 and US4 are only conserved in most alphaherpesviruses. A peculiarity of the ILTV genome is the translocation of UL47 from the unique long region to a position upstream of US4 within the unique short region. Northern blot analyses revealed that all of the analysed genes were transcribed most abundantly during the late () phase of replication, but the only true late (2) gene was UL47. Using monospecific rabbit antisera, the protein products of all of the genes could be detected and localized in ILTV-infected cells. Considerable amounts of the UL31, UL47 and UL48 gene products were found in the cell nuclei, whereas the other proteins were restricted largely to the cytoplasm. Like the respective tegument proteins of other herpesviruses, the UL37 and UL46–UL49 gene products of ILTV were incorporated into virus particles, whereas the UL31 protein and the glycoprotein encoded by US4 (gG) were not detectable in purified virions. It was also demonstrated that the UL48 protein of ILTV is able to activate an alphaherpesvirus immediate-early gene promoter, which is also a typical feature of other UL48 homologues. Taken together, these results indicate that the functions of all of the investigated ILTV proteins are related to those of their homologues in other alphaherpesviruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82532-0
2007-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/3/719.html?itemId=/content/journal/jgv/10.1099/vir.0.82532-0&mimeType=html&fmt=ahah

References

  1. Batterson W., Roizman B. 1983; Characterization of the herpes simplex virion-associated factor responsible for the induction of alpha genes. J Virol 46:371–377
    [Google Scholar]
  2. Blaho J. A., Mitchell C., Roizman B. 1994; An amino acid sequence shared by the herpes simplex virus 1 alpha regulatory proteins 0, 4, 22, and 27 predicts the nucleotidylation of the UL21, UL31, UL47, and UL49 gene products. J Biol Chem 269:17401–17410
    [Google Scholar]
  3. Campbell M. E., Preston C. M. 1987; DNA sequences which regulate the expression of the pseudorabies virus major immediate early gene. Virology 157:307–316 [CrossRef]
    [Google Scholar]
  4. Campbell M. E., Palfreyman J. W., Preston C. M. 1984; Identification of herpes simplex virus DNA sequences which encode a trans-acting polypeptide responsible for stimulation of immediate early transcription. J Mol Biol 180:1–19 [CrossRef]
    [Google Scholar]
  5. Chomczynski P., Sacchi N. 1987; Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159
    [Google Scholar]
  6. Cohen J. I., Seidel K. 1994; Varicella-zoster virus (VZV) open reading frame 10 protein, the homolog of the essential herpes simplex virus protein VP16, is dispensable for VZV replication in vitro. J Virol 68:7850–7858
    [Google Scholar]
  7. Davison A. J., Eberle R., Hayward G. S., McGeoch D. J., Minson A. C., Pellet P. E., Roizman B., Studdert M. J., Thiry E. 2005; Family Herpesviridae . In Virus Taxonomy: Eighth Report of the International Committee on Taxonomy of Viruses pp  193–212 Edited by Fauquet C. M., Mayo M. A., Maniloff J., Desselberger U., Ball L. A. San Diego, CA: Academic Press;
    [Google Scholar]
  8. del Rio T., Werner H. C., Enquist L. W. 2002; The pseudorabies virus VP22 homologue (UL49) is dispensable for virus growth in vitro and has no effect on virulence and neuronal spread in rodents. J Virol 76:774–782 [CrossRef]
    [Google Scholar]
  9. Desai P. J. 2000; A null mutation in the UL36 gene of herpes simplex virus type 1 results in accumulation of unenveloped DNA-filled capsids in the cytoplasm of infected cells. J Virol 74:11608–11618 [CrossRef]
    [Google Scholar]
  10. Desai P., Sexton G., McCaffery J., Person S. 2001; A null mutation in the gene encoding the herpes simplex virus type 1 UL37 polypeptide abrogates virus maturation. J Virol 75:10259–10271 [CrossRef]
    [Google Scholar]
  11. Dorange F., Tischer K., Vautherot J. F., Osterrieder N. 2002; Characterization of Marek's disease virus serotype 1 (MDV-1) deletion mutants that lack UL46 to UL49 genes: MDV-1 UL49 encoding VP22, is indispensable for virus growth. J Virol 76:1959–1970 [CrossRef]
    [Google Scholar]
  12. Elliott G., O'Hare P. 1997; Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell 88:223–233 [CrossRef]
    [Google Scholar]
  13. Elliott G., Mouzakitis G., O'Hare P. 1995; VP16 interacts via its activation domain with VP22, a tegument protein of herpes simplex virus, and is relocated to a novel macromolecular assembly in coexpressing cells. J Virol 69:7932–7941
    [Google Scholar]
  14. Elliott G., Hafezi W., Whiteley A., Bernard E. 2005; Deletion of the herpes simplex virus VP22-encoding gene (UL49) alters the expression, localization, and virion incorporation of ICP0. J Virol 79:9735–9745 [CrossRef]
    [Google Scholar]
  15. Fuchs W., Mettenleiter T. C. 1996; DNA sequence and transcriptional analysis of the UL1 to UL5 gene cluster of infectious laryngotracheitis virus. J Gen Virol 77:2221–2229 [CrossRef]
    [Google Scholar]
  16. Fuchs W., Mettenleiter T. C. 1999; DNA sequence of the UL6 to UL20 genes of infectious laryngotracheitis virus and characterization of the UL10 gene product as a nonglycosylated and nonessential virion protein. J Gen Virol 80:2173–2182
    [Google Scholar]
  17. Fuchs W., Mettenleiter T. C. 2005; The nonessential UL49.5 gene of infectious laryngotracheitis virus encodes an O -glycosylated protein which forms a complex with the non-glycosylated UL10 gene product. Virus Res 112:108–114 [CrossRef]
    [Google Scholar]
  18. Fuchs W., Ziemann K., Teifke J. P., Werner O., Mettenleiter T. C. 2000; The non-essential UL50 gene of avian infectious laryngotracheitis virus encodes a functional dUTPase which is not a virulence factor. J Gen Virol 81:627–638
    [Google Scholar]
  19. Fuchs W., Klupp B. G., Granzow H., Osterrieder N., Mettenleiter T. C. 2002a; The interacting UL31 and UL34 gene products of pseudorabies virus are involved in egress from the host-cell nucleus and represent components of primary enveloped but not mature virions. J Virol 76:364–378 [CrossRef]
    [Google Scholar]
  20. Fuchs W., Granzow H., Klupp B. G., Kopp M., Mettenleiter T. C. 2002b; The UL48 tegument protein of pseudorabies virus is critical for intracytoplasmic assembly of infectious virions. J Virol 76:6729–6742 [CrossRef]
    [Google Scholar]
  21. Fuchs W., Klupp B. G., Granzow H., Hengartner C., Brack A., Mundt A., Enquist L. W., Mettenleiter T. C. 2002c; Physical interaction between envelope glycoproteins E and M of pseudorabies virus and the major tegument protein UL49. J Virol 76:8208–8217 [CrossRef]
    [Google Scholar]
  22. Fuchs W., Klupp B. G., Granzow H., Mettenleiter T. C. 2004; Essential function of the pseudorabies virus UL36 gene product is independent of its interaction with the UL37 protein. J Virol 78:11879–11889 [CrossRef]
    [Google Scholar]
  23. Fuchs W., Wiesner D., Veits J., Teifke J. P., Mettenleiter T. C. 2005; In vitro and in vivo relevance of the infectious laryngotracheitis virus gJ proteins which are expressed from spliced and nonspliced mRNAs. J Virol 79:705–716 [CrossRef]
    [Google Scholar]
  24. Graham F. L., van der Eb A. J. 1973; A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52:456–467 [CrossRef]
    [Google Scholar]
  25. Granzow H., Klupp B. G., Fuchs W., Veits J., Osterrieder N., Mettenleiter T. C. 2001; Egress of alphaherpesviruses: comparative ultrastructural study. J Virol 75:3675–3684 [CrossRef]
    [Google Scholar]
  26. Guo P., Scholz E., Turek J., Nodgreen R., Maloney B. 1993; Assembly pathway of avian infectious laryngotracheitis virus. Am J Vet Res 54:2031–2039
    [Google Scholar]
  27. Guy J. S., Bagust T. J. 2003; Laryngotracheitis. In Diseases of Poultry , 11th edn. pp  121–134 Edited by Saif Y. M., Barnes H. J., Glisson J. R., Fadly A. M., McDougald L. R., Swayne D. E. Ames, IA: Iowa State Press;
    [Google Scholar]
  28. Helferich D., Veits J., Teifke J. P., Mettenleiter T. C., Fuchs W. 2007; The UL47 gene of avian infectious laryngotracheitis virus is not essential for in vitro replication but is relevant for virulence in chickens. J Gen Virol 88:732–742 [CrossRef]
    [Google Scholar]
  29. Johnson M. A., Tyack S. G. 1995; Molecular evolution of infectious laryngotracheitis virus (ILTV; gallid herpesvirus 1): an ancient example of the Alphaherpesviridae?. Vet Microbiol 46:221–231 [CrossRef]
    [Google Scholar]
  30. Johnson M. A., Tyack S. G., Prideaux C. T., Kongsuwan K., Sheppard M. 1995; Nucleotide sequence of infectious laryngotracheitis virus (gallid herpesvirus 1) ICP4 gene. Virus Res 35:193–204 [CrossRef]
    [Google Scholar]
  31. Kawaguchi T., Nomura K., Hirayama Y., Kitagawa T. 1987; Establishment and characterization of a chicken hepatocellular carcinoma cell line, LMH. Cancer Res 47:4460–4464
    [Google Scholar]
  32. Kingsley D. H., Hazel J. W., Keeler C. L., Jr. 1994; Identification and characterization of the infectious laryngotracheitis virus glycoprotein C gene. Virology 203:336–343 [CrossRef]
    [Google Scholar]
  33. Klupp B. G., Granzow H., Mettenleiter T. C. 2000; Primary envelopment of pseudorabies virus at the nuclear membrane requires the UL34 gene product. J Virol 74:10063–10071 [CrossRef]
    [Google Scholar]
  34. Klupp B. G., Granzow H., Mundt E., Mettenleiter T. C. 2001; Pseudorabies virus UL37 gene product is involved in secondary envelopment. J Virol 75:8927–8936 [CrossRef]
    [Google Scholar]
  35. Klupp B. G., Fuchs W., Granzow H., Nixdorf R., Mettenleiter T. C. 2002; Pseudorabies virus UL36 tegument protein physically interacts with the UL37 protein. J Virol 76:3065–3071 [CrossRef]
    [Google Scholar]
  36. Klupp B. G., Hengartner C. J., Mettenleiter T. C., Enquist L. W. 2004; Complete, annotated sequence of the pseudorabies virus genome. J Virol 78:424–440 [CrossRef]
    [Google Scholar]
  37. Kongsuwan K., Johnson M. A., Prideaux C. T., Sheppard M. 1993; Identification of an infectious laryngotracheitis virus gene encoding an immunogenic protein with a predicted M r of 32 kilodaltons. Virus Res 29:125–140 [CrossRef]
    [Google Scholar]
  38. Kopp M., Klupp B. G., Granzow H., Fuchs W., Mettenleiter T. C. 2002; Identification and characterization of the pseudorabies virus tegument proteins UL46 and UL47: role for UL47 in virion morphogenesis in the cytoplasm. J Virol 76:8820–8833 [CrossRef]
    [Google Scholar]
  39. McGeoch D. J., Dalrymple M. A., Davison A. J., Dolan A., Frame M. C., McNab D., Perry L. J., Scott J. E., Taylor P. 1988; The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. J Gen Virol 69:1531–1574 [CrossRef]
    [Google Scholar]
  40. McGeoch D. J., Dolan A., Ralph A. C. 2000; Toward a comprehensive phylogeny for mammalian and avian herpesviruses. J Virol 74:10401–10406 [CrossRef]
    [Google Scholar]
  41. McKnight J. L. C., Pellett P. E., Jenkins F. J., Roizman B. 1987; Characterization and nucleotide sequence of two herpes simplex virus 1 genes whose products modulate α - trans -inducing factor-dependent activation of α genes. J Virol 61:992–1001
    [Google Scholar]
  42. Meredith D. M., Lindsay J. A., Halliburton I. W., Whittaker G. R. 1991; Post-translational modification of the tegument proteins (VP13 and VP14) of herpes simplex virus type 1 by glycosylation and phosphorylation. J Gen Virol 72:2771–2775 [CrossRef]
    [Google Scholar]
  43. Mettenleiter T. C. 2002; Herpesvirus assembly and egress. J Virol 76:1537–1547 [CrossRef]
    [Google Scholar]
  44. Misra V., Bratanich A. C., Carpenter D., O'Hare P. 1994; Protein and DNA elements involved in transactivation of the promotor region of the bovine herpesvirus (BHV) 1 IE-1 transcription unit by the α gene trans -inducing factor. J Virol 68:4898–4909
    [Google Scholar]
  45. Moriuchi H., Moriuchi M., Straus S. E., Cohen J. I. 1993; Varicella-zoster virus open reading frame 10 protein, the herpes simplex virus VP16 homolog, transactivates herpesvirus immediate-early gene promoters. J Virol 67:2739–2746
    [Google Scholar]
  46. Mossman K. L., Sherburne R., Lavery C., Duncan J., Smiley J. R. 2000; Evidence that herpes simplex virus VP16 is required for viral egress downstream of the initial envelopment event. J Virol 74:6287–6299 [CrossRef]
    [Google Scholar]
  47. Muranyi W., Haas J., Wagner M., Krohne G., Koszinowski U. H. 2002; Cytomegalovirus recruitment of cellular kinases to dissolve the nuclear lamina. Science 297:854–857 [CrossRef]
    [Google Scholar]
  48. Poulsen D. J., Keeler C. L., Jr. 1997; Characterization of the assembly and processing of infectious laryngotracheitis virus glycoprotein B. J Gen Virol 78:2945–2951
    [Google Scholar]
  49. Rea T. J., Timmins J. G., Long G. W., Post L. E. 1985; Mapping and sequence of the gene for the pseudorabies virus glycoprotein which accumulates in the medium of infected cells. J Virol 54:21–29
    [Google Scholar]
  50. Reynolds A. E., Ryckman B., Baines J., Zhou Y., Liang L., Roller R. 2001; UL31 and UL34 proteins of herpes simplex virus type 1 form a complex that accumulates at the nuclear rim and is required for envelopment of nucleocapsids. J Virol 75:8803–8817 [CrossRef]
    [Google Scholar]
  51. Roizman B., Knipe D. M. 2001; Herpes simplex viruses and their replication. In Fields Virology , 4th edn. pp  2399–2459 Edited by Knipe D. M., Howley P. M. Philadelphia, PA: Lippincott Williams & Wilkins;
    [Google Scholar]
  52. Roizman B., Pellet P. E. 2001; The family Herpesviridae : a brief introduction. In Fields Virology , 4th edn. pp  2381–2397 Edited by Knipe D. M., Howley P. M. Philadelphia, PA: Lippincott Williams & Wilkins;
    [Google Scholar]
  53. Schnitzlein W. M., Radzevicius J., Tripathy D. N. 1994; Propagation of infectious laryngotracheitis virus in an avian liver cell line. Avian Dis 38:211–217 [CrossRef]
    [Google Scholar]
  54. Thureen D. R., Keeler C. L., Jr. 2006; Psittacid herpesvirus 1 and infectious laryngotracheitis virus: comparative genome sequence analysis of two avian alphaherpesviruses. J Virol 80:7863–7872 [CrossRef]
    [Google Scholar]
  55. Veits J., Mettenleiter T. C., Fuchs W. 2003a; Five unique open reading frames of infectious laryngotracheitis virus are expressed during infection but are dispensable for virus replication in cell culture. J Gen Virol 84:1415–1425 [CrossRef]
    [Google Scholar]
  56. Veits J., Köllner B., Teifke J. P., Granzow H., Mettenleiter T. C., Fuchs W. 2003b; Isolation and characterization of monoclonal antibodies against structural proteins of infectious laryngotracheitis virus. Avian Dis 47:330–342 [CrossRef]
    [Google Scholar]
  57. Vlcek C., Kozmik Z., Paces V., Schirm S., Schwyzer M. 1990; Pseudorabies virus immediate-early gene overlaps with an oppositely oriented open reading frame: characterization of their promoter and enhancer regions. Virology 179:365–377 [CrossRef]
    [Google Scholar]
  58. von Einem J., Schumacher D., O'Callaghan D. J., Osterrieder N. 2006; The α -TIF (VP16) homologue (ETIF) of equine herpesvirus 1 is essential for secondary envelopment and virus egress. J Virol 80:2609–2620 [CrossRef]
    [Google Scholar]
  59. Weinheimer S. P., Boyd B. A., Durham S. K., Resnick J. L., O'Boyle D. R., II. 1992; Deletion of the VP16 open reading frame of herpes simplex virus type 1. J Virol 66:258–269
    [Google Scholar]
  60. Wild M. A., Cook S., Cochran M. 1996; A genomic map of infectious laryngotracheitis virus and the sequence and organization of genes present in the unique short and flanking regions. Virus Genes 12:107–116 [CrossRef]
    [Google Scholar]
  61. Zhang Y., Sirko D., McKnight J. L. C. 1991; Role of herpes simplex virus type 1 UL46 and UL47 in α TIF-mediated transcriptional induction: characterization of three viral deletion mutants. J Virol 65:829–841
    [Google Scholar]
  62. Ziemann K., Mettenleiter T. C., Fuchs W. 1998a; Gene arrangement within the unique long genome region of infectious laryngotracheitis virus is distinct from that of other alphaherpesviruses. J Virol 72:847–852
    [Google Scholar]
  63. Ziemann K., Mettenleiter T. C., Fuchs W. 1998b; Infectious laryngotracheitis herpesvirus expresses a related pair of unique nuclear proteins which are encoded by split genes located at the right end of the UL genome region. J Virol 72:6867–6874
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82532-0
Loading
/content/journal/jgv/10.1099/vir.0.82532-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error