1887

Abstract

The main -acting control regions for replication of the single-stranded DNA genome of maize streak virus (MSV) are believed to reside within an approximately 310 nt long intergenic region (LIR). However, neither the minimum LIR sequence required nor the sequence determinants of replication specificity have been determined experimentally. There are iterated sequences, or iterons, both within the conserved inverted-repeat sequences with the potential to form a stem–loop structure at the origin of virion-strand replication, and upstream of the gene TATA box (the -proximal iteron or RPI). Based on experimental analyses of similar iterons in viruses from other geminivirus genera and their proximity to known Rep-binding sites in the distantly related mastrevirus wheat dwarf virus, it has been hypothesized that the iterons may be Rep-binding and/or -recognition sequences. Here, a series of LIR deletion mutants was used to define the upper bounds of the LIR sequence required for replication. After identifying MSV strains and distinct mastreviruses with incompatible replication-specificity determinants (RSDs), LIR chimaeras were used to map the primary MSV RSD to a 67 nt sequence containing the RPI. Although the results generally support the prevailing hypothesis that MSV iterons are functional analogues of those found in other geminivirus genera, it is demonstrated that neither the inverted-repeat nor RPI sequences are absolute determinants of replication specificity. Moreover, widely divergent mastreviruses can -replicate one another. These results also suggest that sequences in the 67 nt region surrounding the RPI interact in a sequence-specific manner with those of the inverted repeat.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82513-0
2007-06-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/6/1831.html?itemId=/content/journal/jgv/10.1099/vir.0.82513-0&mimeType=html&fmt=ahah

References

  1. Akbar Behjatnia S. A., Dry I. B., Ali R. M. 1998; Identification of the replication-associated protein binding domain within the intergenic region of tomato leaf curl geminivirus. Nucleic Acids Res 26:925–931 [CrossRef]
    [Google Scholar]
  2. Argüello-Astorga G., Herrera-Estrella L., Rivera-Bustamante R. 1994a; Experimental and theoretical definition of geminivirus origin of replication. Plant Mol Biol 26:553–556 [CrossRef]
    [Google Scholar]
  3. Argüello-Astorga G. R., Guevara-Gonzalez R. G., Herrera-Estrella L. R., Rivera-Bustamante R. F. 1994b; Geminivirus replication origins have a group-specific organization of iterative elements: a model for replication. Virology 203:90–100 [CrossRef]
    [Google Scholar]
  4. Briddon R. W., Stanley J. 2006; Subviral agents associated with plant single-stranded DNA viruses. Virology 344:198–210 [CrossRef]
    [Google Scholar]
  5. Brown J. K., Idris A. M., Alteri C., Stenger D. C. 2002; Emergence of a new cucurbit-infecting begomovirus species capable of forming viable reassortants with related viruses in the Squash leaf curl virus cluster. Phytopathology 92:734–742 [CrossRef]
    [Google Scholar]
  6. Callis J., Fromm M., Walbot V. 1987; Introns increase gene expression in cultured maize cells. Genes Dev 1:1183–1200 [CrossRef]
    [Google Scholar]
  7. Castellano M. M., Sanz-Burgos A. P., Gutierrez C. 1999; Initiation of DNA replication in a eukaryotic rolling-circle replicon: identification of multiple DNA-protein complexes at the geminivirus origin. J Mol Biol 290:639–652 [CrossRef]
    [Google Scholar]
  8. Chatterji A., Padidam M., Beachy R. N., Fauquet C. M. 1999; Identification of replication specificity determinants in two strains of tomato leaf curl virus from New Delhi. J Virol 73:5481–5489
    [Google Scholar]
  9. Chatterji A., Chatterji U., Beachy R. N., Fauquet C. M. 2000; Sequence parameters that determine specificity of binding of the replication-associated protein to its cognate site in two strains of tomato leaf curl virus-New Delhi. Virology 273:341–350 [CrossRef]
    [Google Scholar]
  10. Choi I. R., Stenger D. C. 1995; Strain-specific determinants of beet curly top geminivirus DNA replication. Virology 206:904–912 [CrossRef]
    [Google Scholar]
  11. Choi I. R., Stenger D. C. 1996; The strain-specific cis -acting element of beet curly top geminivirus DNA replication maps to the directly repeated motif of the ori . Virology 226:122–126 [CrossRef]
    [Google Scholar]
  12. Dry I. B., Krake L. R., Rigden J. E., Rezaian M. A. 1997; A novel subviral agent associated with a geminivirus: the first report of a DNA satellite. Proc Natl Acad Sci U S A 94:7088–7093 [CrossRef]
    [Google Scholar]
  13. Fenoll C., Black D. M., Howell S. H. 1988; The intergenic region of maize streak virus contains promoter elements involved in rightward transcription of the viral genome. EMBO J 7:1589–1596
    [Google Scholar]
  14. Fenoll C., Schwarz J. J., Black D. M., Schneider M., Howell S. H. 1990; The intergenic region of maize streak virus contains a GC-rich element that activates rightward transcription and binds maize nuclear factors. Plant Mol Biol 15:865–877 [CrossRef]
    [Google Scholar]
  15. Fontes E. P., Luckow V. A., Hanley-Bowdoin L. 1992; A geminivirus replication protein is a sequence-specific DNA binding protein. Plant Cell 4:597–608 [CrossRef]
    [Google Scholar]
  16. Fontes E. P., Eagle P. A., Sipe P. S., Luckow V. A., Hanley-Bowdoin L. 1994a; Interaction between a geminivirus replication protein and origin DNA is essential for viral replication. J Biol Chem 269:8459–8465
    [Google Scholar]
  17. Fontes E. P., Gladfelter H. J., Schaffer R. L., Petty I. T., Hanley-Bowdoin L. 1994b; Geminivirus replication origins have a modular organization. Plant Cell 6:405–416 [CrossRef]
    [Google Scholar]
  18. Frischmuth T., Engel M., Lauster S., Jeske H. 1997; Nucleotide sequence evidence for the occurrence of three distinct whitefly-transmitted, Sida -infecting bipartite geminiviruses in Central America. J Gen Virol 78:2675–2682
    [Google Scholar]
  19. Gilbertson R. L., Hidayat S. H., Paplomatas E. J., Rojas M. R., Hou Y. M., Maxwell D. P. 1993; Pseudorecombination between infectious cloned DNA components of tomato mottle and bean dwarf mosaic geminiviruses. J Gen Virol 74:23–31 [CrossRef]
    [Google Scholar]
  20. Gladfelter H. J., Eagle P. A., Fontes E. P., Batts L., Hanley-Bowdoin L. 1997; Two domains of the AL1 protein mediate geminivirus origin recognition. Virology 239:186–197 [CrossRef]
    [Google Scholar]
  21. Hanley-Bowdoin L., Eagle P. A., Orozco B. M., Robertson D., Settlage S. B. 1996; Geminivirus replication. In Biology of Plant-Microbe Interactions pp 287–292 Edited by Stacey G., Mullin B., Gresshoff P. M. St Paul, MN: International Society for Molecular Plant-Microbe Interactions;
    [Google Scholar]
  22. Hanley-Bowdoin L., Settlage S. B., Orozco B. M., Nagar S., Robertson D. 2000; Geminiviruses: models for plant DNA replication, transcription, and cell cycle regulation. Crit Rev Biochem Mol Biol 35:105–140
    [Google Scholar]
  23. Heyraud F., Matzeit V., Kammann M., Schaefer S., Schell J., Gronenborn B. 1993; Identification of the initiation sequence for viral-strand DNA synthesis of wheat dwarf virus. EMBO J 12:4445–4452
    [Google Scholar]
  24. Hill J. E., Strandberg J. O., Hiebert E., Lazarowitz S. G. 1998; Asymmetric infectivity of pseudorecombinants of cabbage leaf curl virus and squash leaf curl virus: implications for bipartite geminivirus evolution and movement. Virology 250:283–292 [CrossRef]
    [Google Scholar]
  25. Holsters M., De Waele D., Depicker A., Messens E., Van Montagu M., Schell J. 1978; Transfection and transformation of Agrobacterium tumefaciens . Mol Gen Genet 163:181–187 [CrossRef]
    [Google Scholar]
  26. Hou Y. M., Gilbertson R. L. 1996; Increased pathogenicity in a pseudorecombinant bipartite geminivirus correlates with intermolecular recombination. J Virol 70:5430–5436
    [Google Scholar]
  27. Hughes F. L., Rybicki E. P., von Wechmar M. B. 1992; Genome typing of Southern African subgroup-1 geminiviruses. J Gen Virol 73:1031–1040 [CrossRef]
    [Google Scholar]
  28. Jupin I., Hericourt F., Benz B., Gronenborn B. 1995; DNA replication specificity of TYLCV geminivirus is mediated by the amino-terminal 116 amino acids of the Rep protein. FEBS Lett 362:116–120 [CrossRef]
    [Google Scholar]
  29. Kammann M., Schalk H. J., Matzeit V., Schaefer S., Schell J., Gronenborn B. 1991; DNA replication of wheat dwarf virus, a geminivirus, requires two cis-acting signals. Virology 184:786–790 [CrossRef]
    [Google Scholar]
  30. Koncz C., Schell J. 1986; The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204:383–396 [CrossRef]
    [Google Scholar]
  31. Lazarowitz S. G., Wu L. C., Rogers S. G., Elmer J. S. 1992; Sequence-specific interaction with the viral AL1 protein identifies a geminivirus DNA replication origin. Plant Cell 4:799–809 [CrossRef]
    [Google Scholar]
  32. Lin B., Akbar Behjatnia S. A., Dry I. B., Randles J. W., Rezaian M. A. 2003; High-affinity Rep-binding is not required for the replication of a geminivirus DNA and its satellite. Virology 305:353–363 [CrossRef]
    [Google Scholar]
  33. Martin D. P., Willment J. A., Rybicki E. P. 1999; Evaluation of maize streak virus pathogenicity in differentially resistant Zea mays genotypes. Phytopathology 89:695–700 [CrossRef]
    [Google Scholar]
  34. Martin D. P., Williamson C., Posada D. 2005; rdp2: recombination detection and analysis from sequence alignments. Bioinformatics 21:260–262 [CrossRef]
    [Google Scholar]
  35. Martin D. P., Willment J. A., Billharz R., Velders R., Odhiambo B., Njuguna J., James D., Rybicki E. P. 2001; Sequence diversity and virulence in Zea mays of maize streak virus isolates. Virology 288:247–255 [CrossRef]
    [Google Scholar]
  36. McElroy D., Blowers A. D., Jenes B., Wu R. 1991; Construction of expression vectors based on the rice actin 1 (Act1) 5′ region for use in monocot transformation. Mol Gen Genet 231:150–160 [CrossRef]
    [Google Scholar]
  37. Missich R., Ramirez-Parra E., Gutierrez C. 2000; Relationship of oligomerization to DNA binding of wheat dwarf virus RepA and Rep proteins. Virology 273:178–188 [CrossRef]
    [Google Scholar]
  38. Orozco B. M., Gladfelter H. J., Settlage S. B., Eagle P. A., Gentry R. N., Hanley-Bowdoin L. 1998; Multiple cis elements contribute to geminivirus origin function. Virology 242:346–356 [CrossRef]
    [Google Scholar]
  39. Padidam M., Beachy R. N., Fauquet C. M. 1995; Classification and identification of geminiviruses using sequence comparisons. J Gen Virol 76:249–263 [CrossRef]
    [Google Scholar]
  40. Palmer K. E. 1997; Investigations into the use of maize streak virus as a gene vector . PhD thesis University of Cape Town, South Africa;
  41. Palmer K. E., Rybicki E. P. 2001; Investigation of the potential of maize streak virus to act as an infectious gene vector in maize plants. Arch Virol 146:1089–1104 [CrossRef]
    [Google Scholar]
  42. Ramos P. L., Guevara-Gonzalez R. G., Peral R., Ascencio-Ibanez J. T., Polston J. E., Argüello-Astorga G. R., Vega-Arreguin J. C., Rivera-Bustamante R. F. 2003; Tomato mottle Taino virus pseudorecombines with PYMV but not with ToMoV: implications for the delimitation of cis - and trans -acting replication specificity determinants. Arch Virol 148:1697–1712 [CrossRef]
    [Google Scholar]
  43. Rybicki E. P. 1994; A phylogenetic and evolutionary justification for three genera of Geminiviridae . Arch Virol 139:49–77 [CrossRef]
    [Google Scholar]
  44. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  45. Sanz-Burgos A. P., Gutierrez C. 1998; Organization of the cis -acting element required for wheat dwarf geminivirus DNA replication and visualization of a rep protein-DNA complex. Virology 243:119–129 [CrossRef]
    [Google Scholar]
  46. Saunders K., Salim N., Mali V. R., Malathi V. G., Briddon R., Markham P. G., Stanley J. 2002; Characterisation of Sri Lankan cassava mosaic virus and Indian cassava mosaic virus: evidence for acquisition of a DNA B component by a monopartite begomovirus. Virology 293:63–74 [CrossRef]
    [Google Scholar]
  47. Schneider M., Jarchow E., Hohn B. 1992; Mutational analysis of the ‘conserved region' of maize streak virus suggests its involvement in replication. Plant Mol Biol 19:601–610 [CrossRef]
    [Google Scholar]
  48. Schnippenkoetter W. H., Martin D. P., Hughes F. L., Fyvie M., Willment J. A., James D., von Wechmar M. B., Rybicki E. P. 2001a; The relative infectivities and genomic characterisation of three distinct mastreviruses from South Africa. Arch Virol 146:1075–1088 [CrossRef]
    [Google Scholar]
  49. Schnippenkoetter W. H., Martin D. P., Willment J. A., Rybicki E. P. 2001b; Forced recombination between distinct strains of Maize streak virus . J Gen Virol 82:3081–3090
    [Google Scholar]
  50. Shepherd D. N., Martin D. P., McGivern D. R., Boulton M. I., Thomson J. A., Rybicki E. P. 2005; A three-nucleotide mutation altering the Maize streak virus Rep pRBR-interaction motif reduces symptom severity in maize and partially reverts at high frequency without restoring pRBR–Rep binding. J Gen Virol 86:803–813 [CrossRef]
    [Google Scholar]
  51. Stanley J., Townsend R., Curson S. J. 1985; Pseudorecombinants between cloned DNAs of two isolates of cassava latent virus. J Gen Virol 66:1055–1061 [CrossRef]
    [Google Scholar]
  52. Suarez-Lopez P., Gutierrez C. 1997; DNA replication of wheat dwarf geminivirus vectors: effects of origin structure and size. Virology 227:389–399 [CrossRef]
    [Google Scholar]
  53. Suarez-Lopez P., Martinez-Salas E., Hernandez P., Gutierrez C. 1995; Bent DNA in the large intergenic region of wheat dwarf geminivirus. Virology 208:303–311 [CrossRef]
    [Google Scholar]
  54. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  55. Unseld S., Ringel M., Hofer P., Hohnle M., Jeske H., Bedford I. D., Markham P. G., Frischmuth T. 2000; Host range and symptom variation of pseudorecombinant virus produced by two distinct bipartite geminiviruses. Arch Virol 145:1449–1454 [CrossRef]
    [Google Scholar]
  56. Willment J. A., Martin D. P., Rybicki E. P. 2001; Analysis of the diversity of African streak mastreviruses using PCR-generated RFLPs and partial sequence data. J Virol Methods 93:75–87 [CrossRef]
    [Google Scholar]
  57. Willment J. A., Martin D. P., Van der Walt E., Rybicki E. P. 2002; Biological and genomic sequence characterization of Maize streak virus isolates from wheat. Phytopathology 92:81–86 [CrossRef]
    [Google Scholar]
  58. Xie Q., Suarez-Lopez P., Gutierrez C. 1995; Identification and analysis of a retinoblastoma binding motif in the replication protein of a plant DNA virus: requirement for efficient viral DNA replication. EMBO J 14:4073–4082
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82513-0
Loading
/content/journal/jgv/10.1099/vir.0.82513-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error