Enterovirus 94, a proposed new serotype in human enterovirus species D Free

Abstract

The genus (family ) contains five species with strains isolated from humans: (HEV-A), HEV-B, HEV-C, HEV-D and . In this study, a proposed new serotype of HEV-D was characterized. Four virus strains were isolated from sewage in Egypt and one strain from acute flaccid paralysis cases in the Democratic Republic of the Congo. The complete genome of one environmental isolate, the complete coding sequence of one clinical isolate and complete VP1 regions from the other isolates were sequenced. These isolates had 66.6–69.4 % nucleotide similarity and 74.7–76.6 % amino acid sequence similarity in the VP1 region with the closest enterovirus serotype, enterovirus 70 (EV70), suggesting that the isolates form a new enterovirus type, tentatively designated enterovirus 94 (EV94). Phylogenetic analyses including sequences of the 5′ UTR, VP1 and 3D regions demonstrated that EV94 isolates formed a monophyletic group within the species HEV-D. No evidence of recombination was found between EV94 and the other HEV-D serotypes, EV68 and EV70. Further biological characterization showed that EV94 was acid stable and had a wide cell tropism . Attempts to prevent replication with protective antibodies to known enterovirus receptors (poliovirus receptor, vitronectin receptor and decay accelerating factor) were not successful. Seroprevalence studies in the Finnish population revealed a high prevalence of this virus over the past two decades.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82510-0
2007-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/3/849.html?itemId=/content/journal/jgv/10.1099/vir.0.82510-0&mimeType=html&fmt=ahah

References

  1. Alexander D. A., Dimock K. 2002; Sialic acid functions in enterovirus 70 binding and infection. J Virol 76:11265–11272 [CrossRef]
    [Google Scholar]
  2. Blomqvist S., Savolainen C., Raman L., Roivainen M., Hovi T. 2002; Human rhinovirus 87 and enterovirus 68 represent a unique serotype with rhinovirus and enterovirus features. J Clin Microbiol 40:4218–4223 [CrossRef]
    [Google Scholar]
  3. Brown B., Oberste M. S., Maher K., Pallansch M. A. 2003; Complete genomic sequencing shows that polioviruses and members of human enterovirus species C are closely related in the noncapsid coding region. J Virol 77:8973–8984 [CrossRef]
    [Google Scholar]
  4. Chen C. Y., Sarnow P. 1995; Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science 268:415–417 [CrossRef]
    [Google Scholar]
  5. Chevaliez S., Szendroi A., Caro V., Balanant J., Guillot S., Berencsi G., Delpeyroux F. 2004; Molecular comparison of echovirus 11 strains circulating in Europe during an epidemic of multisystem hemorrhagic disease of infants indicates that evolution generally occurs by recombination. Virology 325:56–70 [CrossRef]
    [Google Scholar]
  6. Couch R. 1992; Rhinoviruses. In Laboratory Diagnosis of Viral Infections pp  709–729 Edited by Lennette E. H. New York: Marcel Dekker;
    [Google Scholar]
  7. El Bassioni L., Barakat I., Nasr E., de Gourville E. M., Hovi T., Blomqvist S., Burns C., Stenvik M., Gary H. other authors 2003; Prolonged detection of indigenous wild polioviruses in sewage from communities in Egypt. Am J Epidemiol 158:807–815 [CrossRef]
    [Google Scholar]
  8. Haddad A., Nokhbeh M. R., Alexander D. A., Dawe S. J., Grise C., Gulzar N., Dimock K. 2004; Binding to decay-accelerating factor is not required for infection of human leukocyte cell lines by enterovirus 70. J Virol 78:2674–2681 [CrossRef]
    [Google Scholar]
  9. Härkönen T., Lankinen H., Davydova B., Hovi T., Roivainen M. 2002; Enterovirus infection can induce immune responses that cross-react with β -cell autoantigen tyrosine phosphatase IA-2/IAR. J Med Virol 66:340–350 [CrossRef]
    [Google Scholar]
  10. Hovi T. 2006; Surveillance for polioviruses. Biologicals 34:123–126 [CrossRef]
    [Google Scholar]
  11. Hovi T., Blomqvist S., Nasr E., Burns C. C., Sarjakoski T., Ahmed N., Savolainen C., Roivainen M., Stenvik M. other authors 2005; Environmental surveillance of wild poliovirus circulation in Egypt – balancing between detection sensitivity and workload. J Virol Methods 126:127–134 [CrossRef]
    [Google Scholar]
  12. Hyypiä T., Hovi T., Knowles N. J., Stanway G. 1997; Classification of enteroviruses based on molecular and biological properties. J Gen Virol 78:1–11
    [Google Scholar]
  13. Ida-Hosonuma M., Iwasaki T., Yoshikawa T., Nagata N., Sato Y., Sata T., Yoneyama M., Fujita T., Taya C. other authors 2005; The alpha/beta interferon response controls tissue tropism and pathogenicity of poliovirus. J Virol 79:4460–4469 [CrossRef]
    [Google Scholar]
  14. Junttila N., Leveque N., Kabue J. P., Cartet G., Mushiya F., Muyembe-Tamfum J.-J., Trompette A., Magnius L., Lina B. other authors 2007; New enteroviruses, EV-93 and EV-94, associated with acute flaccid paralysis in the Democratic Republic of the Congo. J Med Virol (in press
  15. Karnauchow T. M., Tolson D. L., Harrison B. A., Altman E., Lublin D. M., Dimock K. 1996; The HeLa cell receptor for enterovirus 70 is decay-accelerating factor (CD55). J Virol 70:5143–5152
    [Google Scholar]
  16. Kono R., Sasagawa A., Yamazaki S., Nakazono N., Minami K., Otatsume S., Robin Y., Renaudet J., Cornet M. other authors 1981; Seroepidemiologic studies of acute hemorrhagic conjunctivitis virus (enterovirus type 70) in West Africa. III. Studies with animal sera from Ghana and Senegal. Am J Epidemiol 114:362–368
    [Google Scholar]
  17. Kumar S., Tamura K., Nei M. 2004; mega3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  18. Lennette E. H. 1969; General principles underlying laboratory diagnosis of viral and rickettsial infections. In Diagnostic Procedures for Viral and Rickettsial Infections pp  1–63 Edited by Lennette E. H., Schmidt N. J. New York: American Public Health Association;
    [Google Scholar]
  19. Lindberg A. M., Andersson P., Savolainen C., Mulders M. N., Hovi T. 2003; Evolution of the genome of Human enterovirus B : incongruence between phylogenies of the VP1 and 3CD regions indicates frequent recombination within the species. J Gen Virol 84:1223–1235 [CrossRef]
    [Google Scholar]
  20. Lole K. S., Bollinger R. C., Paranjape R. S., Gadkari D., Kulkarni S. S., Novak N. G., Ingersoll R., Sheppard H. W., Ray S. C. 1999; Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. J Virol 73:152–160
    [Google Scholar]
  21. Lukashev A. N. 2005; Role of recombination in evolution of enteroviruses. Rev Med Virol 15:157–167 [CrossRef]
    [Google Scholar]
  22. Lukashev A. N., Lashkevich V. A., Ivanova O. E., Koroleva G. A., Hinkkanen A. E., Ilonen J. 2003; Recombination in circulating enteroviruses. J Virol 77:10423–10431 [CrossRef]
    [Google Scholar]
  23. Lukashev A. N., Lashkevich V. A., Ivanova O. E., Koroleva G. A., Hinkkanen A. E., Ilonen J. 2005; Recombination in circulating Human enterovirus B : independent evolution of structural and non-structural genome regions. J Gen Virol 86:3281–3290 [CrossRef]
    [Google Scholar]
  24. Mirkovic R. R., Kono R., Yin-Murphy M., Sohier R., Schmidt N. J., Melnick J. L. 1973; Enterovirus type 70: the etiologic agent of pandemic acute haemorrhagic conjunctivitis. Bull World Health Organ 49:341–346
    [Google Scholar]
  25. Mirmomeni M. H., Hughes P. J., Stanway G. 1997; An RNA tertiary structure in the 3′ untranslated region of enteroviruses is necessary for efficient replication. J Virol 71:2363–2370
    [Google Scholar]
  26. Miyamura K., Tanimura M., Takeda N., Kono R., Yamazaki S. 1986; Evolution of enterovirus 70 in nature: all isolates were recently derived from a common ancestor. Arch Virol 89:1–14 [CrossRef]
    [Google Scholar]
  27. Molla A., Jang S. K., Paul A. V., Reuer Q., Wimmer E. 1992; Cardioviral internal ribosomal entry site is functional in a genetically engineered dicistronic poliovirus. Nature 356:255–257 [CrossRef]
    [Google Scholar]
  28. Nobis P., Zibirre R., Meyer G., Kuhne J., Warnecke G., Koch G. 1985; Production of a monoclonal antibody against an epitope on HeLa cells that is the functional poliovirus binding site. J Gen Virol 66:2563–2569 [CrossRef]
    [Google Scholar]
  29. Nokhbeh M. R., Hazra S., Alexander D. A., Khan A., McAllister M., Suuronen E. J., Griffith M., Dimock K. 2005; Enterovirus 70 binds to different glycoconjugates containing α 2,3-linked sialic acid on different cell lines. J Virol 79:7087–7094 [CrossRef]
    [Google Scholar]
  30. Norder H., Bjerregaard L., Magnius L., Lina B., Aymard M., Chomel J. J. 2003; Sequencing of ‘untypable’ enteroviruses reveals two new types, EV-77 and EV-78, within human enterovirus type B and substitutions in the BC loop of the VP1 protein for known types. J Gen Virol 84:827–836 [CrossRef]
    [Google Scholar]
  31. Oberste M. S., Maher K., Kilpatrick D. R., Pallansch M. A. 1999; Molecular evolution of the human enteroviruses: correlation of serotype with VP1 sequence and application to picornavirus classification. J Virol 73:1941–1948
    [Google Scholar]
  32. Oberste M. S., Maher K., Flemister M. R., Marchetti G., Kilpatrick D. R., Pallansch M. A. 2000; Comparison of classic and molecular approaches for the identification of untypeable enteroviruses. J Clin Microbiol 38:1170–1174
    [Google Scholar]
  33. Oberste M., Schnurr D., Maher K., al-Busaidy S., Pallansch M. 2001; Molecular identification of new picornaviruses and characterization of a proposed enterovirus 73 serotype. J Gen Virol 82:409–416
    [Google Scholar]
  34. Oberste M. S., Nix W. A., Maher K., Pallansch M. A. 2003; Improved molecular identification of enteroviruses by RT-PCR and amplicon sequencing. J Clin Virol 26:375–377 [CrossRef]
    [Google Scholar]
  35. Oberste M. S., Penaranda S., Pallansch M. A. 2004a; RNA recombination plays a major role in genomic change during circulation of coxsackie B viruses. J Virol 78:2948–2955 [CrossRef]
    [Google Scholar]
  36. Oberste M. S., Maher K., Schnurr D., Flemister M. R., Lovchik J. C., Peters H., Sessions W., Kirk C., Chatterjee N. & other authors (2004b). Enterovirus 68 is associated with respiratory illness and shares biological features with both the enteroviruses and the rhinoviruses. J Gen Virol 85:2577–2584 [CrossRef]
    [Google Scholar]
  37. Oberste M. S., Michele S. M., Maher K., Schnurr D., Cisterna D., Junttila N., Uddin M., Chomel J.-J., Lau C.-S. & other authors (2004c). Molecular identification and characterization of two proposed new enterovirus serotypes, EV74 and EV75. J Gen Virol 85:3205–3212 [CrossRef]
    [Google Scholar]
  38. Oberste M. S., Maher K., Michele S. M., Belliot G., Uddin M., Pallansch M. A. 2005; Enteroviruses 76, 89, 90 and 91 represent a novel group within the species Human enterovirus A . J Gen Virol 86:445–451 [CrossRef]
    [Google Scholar]
  39. Oprisan G., Combiescu M., Guillot S., Caro V., Combiescu A., Delpeyroux F., Crainic R. 2002; Natural genetic recombination between co-circulating heterotypic enteroviruses. J Gen Virol 83:2193–2200
    [Google Scholar]
  40. Pallansch M. A., Roos R. P. 2001; Enteroviruses: polioviruses, coxsackieviruses, echoviruses and newer enteroviruses. In Fields Virology , 4th edn. pp  723–775 Edited by Knipe D. M., Howley P. M., Griffin D. E., Lamb R. A., Martin M. A., Roizman B., Straus S. E. Philadelphia: Lippincott Williams & Wilkins;
    [Google Scholar]
  41. Palmenberg A. C. 1990; Proteolytic processing of picornaviral polyprotein. Annu Rev Microbiol 44:603–623 [CrossRef]
    [Google Scholar]
  42. Pelletier J., Sonenberg N. 1988; Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334:320–325 [CrossRef]
    [Google Scholar]
  43. Pilipenko E. V., Maslova S. V., Sinyakov A. N., Agol V. I. 1992; Towards identification of cis -acting elements involved in the replication of enterovirus and rhinovirus RNAs: a proposal for the existence of tRNA-like terminal structures. Nucleic Acids Res 20:1739–1745 [CrossRef]
    [Google Scholar]
  44. Pilipenko E. V., Poperechny K. V., Maslova S. V., Melchers W. J., Slot H. J., Agol V. I. 1996; Cis -element, oriR , involved in the initiation of (-) strand poliovirus RNA: a quasi-globular multi-domain RNA structure maintained by tertiary (‘kissing’) interactions. EMBO J 15:5428–5436
    [Google Scholar]
  45. Pipkin P. A., Wood D. J., Racaniello V. R., Minor P. D. 1993; Characterisation of L cells expressing the human poliovirus receptor for the specific detection of polioviruses in vitro. J Virol Methods 41:333–340 [CrossRef]
    [Google Scholar]
  46. Reithmayer M., Reischl A., Snyers L., Blaas D. 2002; Species-specific receptor recognition by a minor-group human rhinovirus (HRV): HRV serotype 1A distinguishes between the murine and the human low-density lipoprotein receptor. J Virol 76:6957–6965 [CrossRef]
    [Google Scholar]
  47. Salminen M. O., Carr J. K., Burke D. S., McCutchan F. E. 1995; Identification of breakpoints in intergenotypic recombinants of HIV type 1 by bootscanning. AIDS Res Hum Retroviruses 11:1423–1425 [CrossRef]
    [Google Scholar]
  48. Santti J., Hyypiä T., Kinnunen L., Salminen M. 1999; Evidence of recombination among enteroviruses. J Virol 73:8741–8749
    [Google Scholar]
  49. Sasagawa A., Miyamura K., Kono R. 1982; Enterovirus type 70-neutralizing IgM in animal sera. Jpn J Med Sci Biol 35:63–73 [CrossRef]
    [Google Scholar]
  50. Schmidt H. A., Strimmer K., Vingron M., von Haeseler A. 2002; tree-puzzle: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18:502–504 [CrossRef]
    [Google Scholar]
  51. Stanway G., Brown F., Christian P., Hovi T., Hyypiä T., King A. M. Q., Knowles N. J., Lemon S. M., Minor P. D. other authors 2005; Family Picornaviridae. In Virus Taxonomy. Eighth Report of the International Committee on Taxonomy of Viruses pp  757–778 Edited by Fauquet C. M., Mayo M. A., Maniloff J., Desselberger U., Ball L. A. London: Elsevier/Academic Press;
    [Google Scholar]
  52. Takeda N., Tanimura M., Miyamura K. 1994; Molecular evolution of the major capsid protein VP1 of enterovirus 70. J Virol 68:854–862
    [Google Scholar]
  53. Tamura K., Nei M. 1993; Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526
    [Google Scholar]
  54. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  55. Whitton J. L., Cornell C. T., Feuer R. 2005; Host and virus determinants of picornavirus pathogenesis and tropism. Nat Rev Microbiol 3:765–776 [CrossRef]
    [Google Scholar]
  56. Ylipaasto P., Klingel K., Lindberg A. M., Otonkoski T., Kandolf R., Hovi T., Roivainen M. 2004; Enterovirus infection in human pancreatic islet cells, islet tropism in vivo and receptor involvement in cultured islet beta cells. Diabetologia 47:225–239 [CrossRef]
    [Google Scholar]
  57. Yoshii T., Natori K., Kono R. 1977; Replication of enterovirus 70 in non-primate cell cultures. J Gen Virol 36:377–384 [CrossRef]
    [Google Scholar]
  58. Yoshikawa T., Iwasaki T., Ida-Hosonuma M., Yoneyama M., Fujita T., Horie H., Miyazawa M., Abe S., Simizu B., Koike S. 2006; Role of the alpha/beta interferon response in the acquisition of susceptibility to poliovirus by kidney cells in culture. J Virol 80:4313–4325 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82510-0
Loading
/content/journal/jgv/10.1099/vir.0.82510-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed