1887

Abstract

Glycoprotein I (gI) of herpes simplex virus type 1 (HSV-1) contains a tandem repeat (TR) region including the amino acids serine and threonine, residues that can be utilized for -glycosylation. The length of this TR region was determined for 82 clinical HSV-1 isolates and the results revealed a polymorphic distribution of two to six or eight repeated blocks with a majority harbouring between two and four repeats. Assessment of the -glycosylation capacity of an acceptor peptide (STPSTTTSTPSTTT), representing two of the gI blocks, showed that the peptide was a universal substrate for -glycosylation not only for the two most commonly expressed -acetyl--galactosamine (GalNAc)-T1 and -T2 transferases, but also for the GalNAc-T3, -T4 and -T11 transferases. Immunoblotting of virus-infected cells showed that gI was exclusively -glycosylated with GalNAc monosaccharides (Tn antigen). A polymorphic mucin region has not been described previously for HSV-1 and is a unique finding, as repeated blocks within gI homologues are lacking in other alphaherpesviruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82500-0
2007-06-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/6/1683.html?itemId=/content/journal/jgv/10.1099/vir.0.82500-0&mimeType=html&fmt=ahah

References

  1. Basu, S., Dubin, G., Nagashunmugam, T., Basu, M., Goldstein, L. T., Wang, L., Weeks, B. & Friedman, H. M. ( 1997; ). Mapping regions of herpes simplex virus type 1 glycoprotein I required for formation of the viral Fc receptor for monomeric IgG. J Immunol 158, 209–215.
    [Google Scholar]
  2. Bennett, E. P., Hassan, H., Mandel, U., Mirgorodskaya, E., Roepstorff, P., Burchell, J., Taylor-Papadimitriou, J., Hollingsworth, M. A., Merkx, G. & other authors ( 1998; ). Cloning of a human UDP-N-acetyl-α-d-galactosamine : polypeptide N-acetylgalactosaminyltransferase that complements other GalNAc-transferases in complete O-glycosylation of the MUC1 tandem repeat. J Biol Chem 273, 30472–30481.[CrossRef]
    [Google Scholar]
  3. Bennett, E. P., Hassan, H., Mandel, U., Hollingsworth, M. A., Akisawa, N., Ikematsu, Y., Merkx, G., van Kessel, A. G., Olofsson, S. & Clausen, H. ( 1999; ). Cloning and characterization of a close homologue of human UDP-N-acetyl-α-d-galactosamine : polypeptide N-acetylgalactosaminyltransferase-T3, designated GalNAc-T6. Evidence for genetic but not functional redundancy. J Biol Chem 274, 25362–25370.[CrossRef]
    [Google Scholar]
  4. Chapman, T. L., You, I., Joseph, I. M., Bjorkman, P. J., Morrison, S. L. & Raghavan, M. ( 1999; ). Characterization of the interaction between the herpes simplex virus type I Fc receptor and immunoglobulin G. J Biol Chem 274, 6911–6919.[CrossRef]
    [Google Scholar]
  5. Clausen, H. & Bennett, E. P. ( 1996; ). A family of UDP-GalNAc: polypeptide N-acetylgalactosaminyl-transferases control the initiation of mucin-type O-linked glycosylation. Glycobiology 6, 635–646.[CrossRef]
    [Google Scholar]
  6. Defrees, S., Wang, Z. G., Xing, R., Scott, A. E., Wang, J., Zopf, D., Gouty, D. L., Sjoberg, E. R., Panneerselvam, K. & other authors ( 2006; ). GlycoPEGylation of recombinant therapeutic proteins produced in Escherichia coli. Glycobiology 16, 833–843.[CrossRef]
    [Google Scholar]
  7. Dingwell, K. S. & Johnson, D. C. ( 1998; ). The herpes simplex virus gE-gI complex facilitates cell-to-cell spread and binds to components of cell junctions. J Virol 72, 8933–8942.
    [Google Scholar]
  8. Dingwell, K. S., Doering, L. C. & Johnson, D. C. ( 1995; ). Glycoproteins E and I facilitate neuron-to-neuron spread of herpes simplex virus. J Virol 69, 7087–7098.
    [Google Scholar]
  9. Dubin, G., Frank, I. & Friedman, H. M. ( 1990; ). Herpes simplex virus type 1 encodes two Fc receptors which have different binding characteristics for monomeric immunoglobulin G (IgG) and IgG complexes. J Virol 64, 2725–2731.
    [Google Scholar]
  10. Goldstein, I. J. & Hayes, C. E. ( 1978; ). The lectins: carbohydrate-binding proteins of plants and animals. Adv Carbohydr Chem Biochem 35, 127–340.
    [Google Scholar]
  11. Gooley, A. A. & Williams, K. L. ( 1994; ). Towards characterizing O-glycans: the relative merits of in vivo and in vitro approaches in seeking peptide motifs specifying O-glycosylation sites. Glycobiology 4, 413–417.[CrossRef]
    [Google Scholar]
  12. Haarr, L. & Skulstad, S. ( 1994; ). The herpes simplex virus type 1 particle: structure and molecular functions. Review article. APMIS 102, 321–346.[CrossRef]
    [Google Scholar]
  13. Hanke, T., Graham, F. L., Lulitanond, V. & Johnson, D. C. ( 1990; ). Herpes simplex virus IgG Fc receptors induced using recombinant adenovirus vectors expressing glycoproteins E and I. Virology 177, 437–444.[CrossRef]
    [Google Scholar]
  14. Hassan, H., Bennett, E. P., Mandel, U., Hollingsworth, M. A. & Clausen, H. ( 2000; ). O-glycan occupancy is directed by substrate specificities of polypeptide GalNAc-transferases. In Carbohydrates in Chemistry and Biology, pp. 271–292. Edited by B. Ernst, B. W. Hart & P. Sina. New York: Wiley-VCH.
  15. Jentoft, N. ( 1990; ). Why are proteins O-glycosylated?. Trends Biochem Sci 15, 291–294.[CrossRef]
    [Google Scholar]
  16. Johnson, D. C. & Feenstra, V. ( 1987; ). Identification of a novel herpes simplex virus type 1-induced glycoprotein which complexes with gE and binds immunoglobulin. J Virol 61, 2208–2216.
    [Google Scholar]
  17. Johnson, D. C., Frame, M. C., Ligas, M. W., Cross, A. M. & Stow, N. D. ( 1988; ). Herpes simplex virus immunoglobulin G Fc receptor activity depends on a complex of two viral glycoproteins, gE and gI. J Virol 62, 1347–1354.
    [Google Scholar]
  18. Löwhagen, G.-B., Tunbäck, P., Andersson, K., Bergström, T. & Johannisson, G. ( 2000; ). First episodes of genital herpes in a Swedish STD population: a study of epidemiology and transmission by the use of herpes simplex virus (HSV) typing and specific serology. Sex Transm Infect 76, 179–182.[CrossRef]
    [Google Scholar]
  19. Lundström, M., Olofsson, S., Jeansson, S., Lycke, E., Datema, R. & Månsson, J. ( 1987; ). Host cell-induced differences in O-glycosylation of herpes simplex virus gC-1. Virology 161, 385–394.[CrossRef]
    [Google Scholar]
  20. Mandel, U., Petersen, O. W., Sorensen, H., Vedtofte, P., Hakomori, S., Clausen, H. & Dabelsteen, E. ( 1991; ). Simple mucin-type carbohydrates in oral stratified squamous and salivary gland epithelia. J Invest Dermatol 97, 713–721.[CrossRef]
    [Google Scholar]
  21. Mandel, U., Hassan, H., Therkildsen, M. H., Rygaard, J., Jakobsen, M. H., Juhl, B. R., Dabelsteen, E. & Clausen, H. ( 1999; ). Expression of polypeptide GalNAc-transferases in stratified epithelia and squamous cell carcinomas: immunohistological evaluation using monoclonal antibodies to three members of the GalNAc-transferase family. Glycobiology 9, 43–52.[CrossRef]
    [Google Scholar]
  22. McGeoch, D. J., Dolan, A., Donald, S. & Rixon, F. J. ( 1985; ). Sequence determination and genetic content of the short unique region in the genome of herpes simplex virus type 1. J Mol Biol 181, 1–13.[CrossRef]
    [Google Scholar]
  23. McGeoch, D. J., Dolan, A., Donald, S. & Brauer, D. H. ( 1986; ). Complete DNA sequence of the short repeat region in the genome of herpes simplex virus type 1. Nucleic Acids Res 14, 1727–1745.[CrossRef]
    [Google Scholar]
  24. McGeoch, D. J., Dalrymple, M. A., Davison, A. J., Dolan, A., Frame, M. C., McNab, D., Perry, L. J., Scott, J. E. & Taylor, P. ( 1988; ). The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. J Gen Virol 69, 1531–1551.[CrossRef]
    [Google Scholar]
  25. Norberg, P., Bergström, T., Rekabdar, E., Lindh, M. & Liljeqvist, J.-A. ( 2004; ). Phylogenetic analysis of clinical herpes simplex virus type 1 isolates identified three genetic groups and recombinant viruses. J Virol 78, 10755–10764.[CrossRef]
    [Google Scholar]
  26. Olofsson, S. ( 1992; ). Carbohydrates in herpesvirus infections. APMIS 100, 84–95.
    [Google Scholar]
  27. Perry, L. J. & McGeoch, D. J. ( 1988; ). The DNA sequences of the long repeat region and adjoining parts of the long unique region in the genome of herpes simplex virus type 1. J Gen Virol 69, 2831–2846.[CrossRef]
    [Google Scholar]
  28. Singh, P. K. & Hollingsworth, M. A. ( 2006; ). Cell surface-associated mucins in signal transduction. Trends Cell Biol 16, 467–476.[CrossRef]
    [Google Scholar]
  29. Sjoblom, I., Glorioso, J. C., Sjogren-Jansson, E. & Olofsson, S. ( 1992; ). Antigenic structure of the herpes simplex virus type 1 glycoprotein C: demonstration of a linear epitope situated in an environment of highly conformation-dependent epitopes. APMIS 100, 229–236.[CrossRef]
    [Google Scholar]
  30. Ten Hagen, K. G., Fritz, T. A. & Tabak, L. A. ( 2003; ). All in the family: the UDP-GalNAc : polypeptide N-acetylgalactosaminyltransferases. Glycobiology 13, 1R–16R.[CrossRef]
    [Google Scholar]
  31. Van Klinken, B. J., Dekker, J., Buller, H. A. & Einerhand, A. W. ( 1995; ). Mucin gene structure and expression: protection vs. adhesion. Am J Physiol 269, G613–G627.
    [Google Scholar]
  32. Wandall, H. H., Hassan, H., Mirgorodskaya, E., Kristensen, A. K., Roepstorff, P., Bennett, E. P., Nielsen, P. A., Hollingsworth, M. A., Burchell, J. & other authors ( 1997; ). Substrate specificities of three members of the human UDP-N-acetyl-α-d-galactosamine : polypeptide N-acetylgalactosaminyltransferase family, GalNAc-T1, -T2, and -T3. J Biol Chem 272, 23503–23514.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82500-0
Loading
/content/journal/jgv/10.1099/vir.0.82500-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error