1887

Abstract

Glycoprotein I (gI) of herpes simplex virus type 1 (HSV-1) contains a tandem repeat (TR) region including the amino acids serine and threonine, residues that can be utilized for -glycosylation. The length of this TR region was determined for 82 clinical HSV-1 isolates and the results revealed a polymorphic distribution of two to six or eight repeated blocks with a majority harbouring between two and four repeats. Assessment of the -glycosylation capacity of an acceptor peptide (STPSTTTSTPSTTT), representing two of the gI blocks, showed that the peptide was a universal substrate for -glycosylation not only for the two most commonly expressed -acetyl--galactosamine (GalNAc)-T1 and -T2 transferases, but also for the GalNAc-T3, -T4 and -T11 transferases. Immunoblotting of virus-infected cells showed that gI was exclusively -glycosylated with GalNAc monosaccharides (Tn antigen). A polymorphic mucin region has not been described previously for HSV-1 and is a unique finding, as repeated blocks within gI homologues are lacking in other alphaherpesviruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82500-0
2007-06-01
2021-05-15
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/6/1683.html?itemId=/content/journal/jgv/10.1099/vir.0.82500-0&mimeType=html&fmt=ahah

References

  1. Basu S., Dubin G., Nagashunmugam T., Basu M., Goldstein L. T., Wang L., Weeks B., Friedman H. M. 1997; Mapping regions of herpes simplex virus type 1 glycoprotein I required for formation of the viral Fc receptor for monomeric IgG. J Immunol 158:209–215
    [Google Scholar]
  2. Bennett E. P., Hassan H., Mandel U., Mirgorodskaya E., Roepstorff P., Burchell J., Taylor-Papadimitriou J., Hollingsworth M. A., Merkx G. other authors 1998; Cloning of a human UDP- N -acetyl- α -d-galactosamine : polypeptide N -acetylgalactosaminyltransferase that complements other GalNAc-transferases in complete O -glycosylation of the MUC1 tandem repeat. J Biol Chem 273:30472–30481 [CrossRef]
    [Google Scholar]
  3. Bennett E. P., Hassan H., Mandel U., Hollingsworth M. A., Akisawa N., Ikematsu Y., Merkx G., van Kessel A. G., Olofsson S., Clausen H. 1999; Cloning and characterization of a close homologue of human UDP- N -acetyl- α -d-galactosamine : polypeptide N -acetylgalactosaminyltransferase-T3, designated GalNAc-T6. Evidence for genetic but not functional redundancy. J Biol Chem 274:25362–25370 [CrossRef]
    [Google Scholar]
  4. Chapman T. L., You I., Joseph I. M., Bjorkman P. J., Morrison S. L., Raghavan M. 1999; Characterization of the interaction between the herpes simplex virus type I Fc receptor and immunoglobulin G. J Biol Chem 274:6911–6919 [CrossRef]
    [Google Scholar]
  5. Clausen H., Bennett E. P. 1996; A family of UDP-GalNAc: polypeptide N -acetylgalactosaminyl-transferases control the initiation of mucin-type O -linked glycosylation. Glycobiology 6:635–646 [CrossRef]
    [Google Scholar]
  6. Defrees S., Wang Z. G., Xing R., Scott A. E., Wang J., Zopf D., Gouty D. L., Sjoberg E. R., Panneerselvam K. other authors 2006; GlycoPEGylation of recombinant therapeutic proteins produced in Escherichia coli . Glycobiology 16:833–843 [CrossRef]
    [Google Scholar]
  7. Dingwell K. S., Johnson D. C. 1998; The herpes simplex virus gE-gI complex facilitates cell-to-cell spread and binds to components of cell junctions. J Virol 72:8933–8942
    [Google Scholar]
  8. Dingwell K. S., Doering L. C., Johnson D. C. 1995; Glycoproteins E and I facilitate neuron-to-neuron spread of herpes simplex virus. J Virol 69:7087–7098
    [Google Scholar]
  9. Dubin G., Frank I., Friedman H. M. 1990; Herpes simplex virus type 1 encodes two Fc receptors which have different binding characteristics for monomeric immunoglobulin G (IgG) and IgG complexes. J Virol 64:2725–2731
    [Google Scholar]
  10. Goldstein I. J., Hayes C. E. 1978; The lectins: carbohydrate-binding proteins of plants and animals. Adv Carbohydr Chem Biochem 35:127–340
    [Google Scholar]
  11. Gooley A. A., Williams K. L. 1994; Towards characterizing O -glycans: the relative merits of in vivo and in vitro approaches in seeking peptide motifs specifying O -glycosylation sites. Glycobiology 4:413–417 [CrossRef]
    [Google Scholar]
  12. Haarr L., Skulstad S. 1994; The herpes simplex virus type 1 particle: structure and molecular functions. Review article. APMIS 102:321–346 [CrossRef]
    [Google Scholar]
  13. Hanke T., Graham F. L., Lulitanond V., Johnson D. C. 1990; Herpes simplex virus IgG Fc receptors induced using recombinant adenovirus vectors expressing glycoproteins E and I. Virology 177:437–444 [CrossRef]
    [Google Scholar]
  14. Hassan H., Bennett E. P., Mandel U., Hollingsworth M. A., Clausen H. 2000; O -glycan occupancy is directed by substrate specificities of polypeptide GalNAc-transferases. In Carbohydrates in Chemistry and Biology pp 271–292 Edited by Ernst B., Hart B. W., Sina P. New York: Wiley-VCH;
    [Google Scholar]
  15. Jentoft N. 1990; Why are proteins O -glycosylated?. Trends Biochem Sci 15:291–294 [CrossRef]
    [Google Scholar]
  16. Johnson D. C., Feenstra V. 1987; Identification of a novel herpes simplex virus type 1-induced glycoprotein which complexes with gE and binds immunoglobulin. J Virol 61:2208–2216
    [Google Scholar]
  17. Johnson D. C., Frame M. C., Ligas M. W., Cross A. M., Stow N. D. 1988; Herpes simplex virus immunoglobulin G Fc receptor activity depends on a complex of two viral glycoproteins, gE and gI. J Virol 62:1347–1354
    [Google Scholar]
  18. Löwhagen G.-B., Tunbäck P., Andersson K., Bergström T., Johannisson G. 2000; First episodes of genital herpes in a Swedish STD population: a study of epidemiology and transmission by the use of herpes simplex virus (HSV) typing and specific serology. Sex Transm Infect 76:179–182 [CrossRef]
    [Google Scholar]
  19. Lundström M., Olofsson S., Jeansson S., Lycke E., Datema R., Månsson J. 1987; Host cell-induced differences in O -glycosylation of herpes simplex virus gC-1. Virology 161:385–394 [CrossRef]
    [Google Scholar]
  20. Mandel U., Petersen O. W., Sorensen H., Vedtofte P., Hakomori S., Clausen H., Dabelsteen E. 1991; Simple mucin-type carbohydrates in oral stratified squamous and salivary gland epithelia. J Invest Dermatol 97:713–721 [CrossRef]
    [Google Scholar]
  21. Mandel U., Hassan H., Therkildsen M. H., Rygaard J., Jakobsen M. H., Juhl B. R., Dabelsteen E., Clausen H. 1999; Expression of polypeptide GalNAc-transferases in stratified epithelia and squamous cell carcinomas: immunohistological evaluation using monoclonal antibodies to three members of the GalNAc-transferase family. Glycobiology 9:43–52 [CrossRef]
    [Google Scholar]
  22. McGeoch D. J., Dolan A., Donald S., Rixon F. J. 1985; Sequence determination and genetic content of the short unique region in the genome of herpes simplex virus type 1. J Mol Biol 181:1–13 [CrossRef]
    [Google Scholar]
  23. McGeoch D. J., Dolan A., Donald S., Brauer D. H. 1986; Complete DNA sequence of the short repeat region in the genome of herpes simplex virus type 1. Nucleic Acids Res 14:1727–1745 [CrossRef]
    [Google Scholar]
  24. McGeoch D. J., Dalrymple M. A., Davison A. J., Dolan A., Frame M. C., McNab D., Perry L. J., Scott J. E., Taylor P. 1988; The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. J Gen Virol 69:1531–1551 [CrossRef]
    [Google Scholar]
  25. Norberg P., Bergström T., Rekabdar E., Lindh M., Liljeqvist J.-A. 2004; Phylogenetic analysis of clinical herpes simplex virus type 1 isolates identified three genetic groups and recombinant viruses. J Virol 78:10755–10764 [CrossRef]
    [Google Scholar]
  26. Olofsson S. 1992; Carbohydrates in herpesvirus infections. APMIS 100:84–95
    [Google Scholar]
  27. Perry L. J., McGeoch D. J. 1988; The DNA sequences of the long repeat region and adjoining parts of the long unique region in the genome of herpes simplex virus type 1. J Gen Virol 69:2831–2846 [CrossRef]
    [Google Scholar]
  28. Singh P. K., Hollingsworth M. A. 2006; Cell surface-associated mucins in signal transduction. Trends Cell Biol 16:467–476 [CrossRef]
    [Google Scholar]
  29. Sjoblom I., Glorioso J. C., Sjogren-Jansson E., Olofsson S. 1992; Antigenic structure of the herpes simplex virus type 1 glycoprotein C: demonstration of a linear epitope situated in an environment of highly conformation-dependent epitopes. APMIS 100:229–236 [CrossRef]
    [Google Scholar]
  30. Ten Hagen K. G., Fritz T. A., Tabak L. A. 2003; All in the family: the UDP-GalNAc : polypeptide N -acetylgalactosaminyltransferases. Glycobiology 13:1R–16R [CrossRef]
    [Google Scholar]
  31. Van Klinken B. J., Dekker J., Buller H. A., Einerhand A. W. 1995; Mucin gene structure and expression: protection vs. adhesion. Am J Physiol 269:G613–G627
    [Google Scholar]
  32. Wandall H. H., Hassan H., Mirgorodskaya E., Kristensen A. K., Roepstorff P., Bennett E. P., Nielsen P. A., Hollingsworth M. A., Burchell J. other authors 1997; Substrate specificities of three members of the human UDP- N -acetyl- α -d-galactosamine : polypeptide N -acetylgalactosaminyltransferase family, GalNAc-T1, -T2, and -T3. J Biol Chem 272:23503–23514 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82500-0
Loading
/content/journal/jgv/10.1099/vir.0.82500-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error