1887

Abstract

Based on the sequence of the E1 glycoprotein gene, two clades and ten genotypes of have been distinguished; however, genomic sequences have been determined for viruses in only two of these genotypes. In this report, genomic sequences for viruses in an additional six genotypes were determined. The genome was found to be well conserved. The viruses in all eight of these genotypes had the same number of nucleotides in each of the two open reading frames (ORFs) and the untranslated regions (UTRs) at the 5′ and 3′ ends of the genome. Only the UTR between the ORFs (the junction region) exhibited differences in length. Of the nucleotides in the genome, 78 % were invariant. The greatest observed distance between viruses in different genotypes was 8.74 % and the maximum calculated genetic distance was 14.78 substitutions in 100 sites. This degree of variability was similar among regions of the genome with two exceptions, both within the P150 non-structural protein gene: the N-terminal region that encodes the methyl/guanylyltransferase domain was less variable, whereas the hypervariable domain in the middle of the gene was more divergent. Comparative phylogenetic analysis of different regions of the genome was done, using sequences from 43 viruses of the non-structural protease (near the 5′ end of the genome), the junction region (the middle) and the E1 gene (the 3′ end). Phylogenetic segregation of sequences from these three genomic regions was similar with the exception of genotype 1B viruses, among which a recombinational event near the junction region was identified.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82495-0
2007-03-01
2024-12-08
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/3/932.html?itemId=/content/journal/jgv/10.1099/vir.0.82495-0&mimeType=html&fmt=ahah

References

  1. Arankalle V. A., Paranjape S., Emerson S. U., Purcell R. H., Walimbe A. M. 1999; Phylogenetic analysis of hepatitis E virus isolates from India (1976–1993). J Gen Virol 80:1691–1700
    [Google Scholar]
  2. Bosma T. J., Best J. M., Corbett K. M., Banatvala J. E., Starkey W. G. 1996; Nucleotide sequence analysis of a major antigenic domain of the E1 glycoprotein of 22 rubella virus isolates. J Gen Virol 77:2523–2530 [CrossRef]
    [Google Scholar]
  3. Chantler J. K., Wolinsky J. S., Tingle A. 2001; Rubella virus. In Fields Virology , 4th edn. pp  963–990 Edited by Knipe D. M., Howley P. M. Philadelphia, PA: Lippincott Williams & Wilkins;
    [Google Scholar]
  4. Clarke D. M., Loo T. W., Hui I., Chong P., Gillam S. 1987; Nucleotide sequence and in vitro expression of rubella virus 24S subgenomic messenger RNA encoding the structural proteins E1, E2 and C. Nucleic Acids Res 15:3041–3057 [CrossRef]
    [Google Scholar]
  5. Dominguez G., Wang C. Y., Frey T. K. 1990; Sequence of the genome RNA of rubella virus: evidence for genetic rearrangement during togavirus evolution. Virology 177:225–238 [CrossRef]
    [Google Scholar]
  6. Donadio F. F., Siqueira M. M., Vyse A., Jin L., Oliveira S. A. 2003; The genomic analysis of rubella virus detected from outbreak and sporadic cases in Rio de Janeiro state. Brazil. J Clin Virol 27:205–209 [CrossRef]
    [Google Scholar]
  7. Frey T. K. 1994; Molecular biology of rubella virus. Adv Virus Res 44:69–160
    [Google Scholar]
  8. Frey T. K., Abernathy E. S., Bosma T. J., Starkey W. G., Corbett K. M., Best J. M., Katow S., Weaver S. C. 1998; Molecular analysis of rubella virus epidemiology across three continents, North America, Europe, and Asia, 1961-1997. J Infect Dis 178:642–650 [CrossRef]
    [Google Scholar]
  9. Gouvea V., Snellings N., Popek M. J., Longer C. F., Innis B. L. 1998; Hepatitis E virus: complete genome sequence and phylogenetic analysis of a Nepali isolate. Virus Res 57:21–26 [CrossRef]
    [Google Scholar]
  10. Henikoff S., Henikoff J. G. 1994; Position-based sequence weights. J Mol Biol 243:574–578 [CrossRef]
    [Google Scholar]
  11. Hofmann J., Renz M., Meyer S., von Haeseler A., Liebert U. G. 2003; Phylogenetic analysis of rubella virus including new genotype I isolates. Virus Res 96:123–128 [CrossRef]
    [Google Scholar]
  12. Huang F. F., Sun Z. F., Emerson S. U., Purcell R. H., Shivaprasad H. L., Pierson F. W., Toth T. E., Meng X. J. 2004; Determination and analysis of the complete genomic sequence of avian hepatitis E virus (avian HEV) and attempts to infect rhesus monkeys with avian HEV. J Gen Virol 85:1609–1618 [CrossRef]
    [Google Scholar]
  13. Icenogle J. P., Frey T. K., Abernathy E., Reef S. E., Schnurr D., Stewart J. A. 2006; Genetic analysis of rubella viruses found in the United States between 1966 and 2004: evidence that indigenous rubella viruses have been eliminated. Clin Infect Dis 43 (Suppl. 3):S133–S140 [CrossRef]
    [Google Scholar]
  14. Kakizawa J., Nitta Y., Yamashita T., Ushijima H., Katow S. 2001; Mutations of rubella virus vaccine TO-336 strain occurred in the attenuation process of wild progenitor virus. Vaccine 19:2793–2802 [CrossRef]
    [Google Scholar]
  15. Kang S. Y., Yun S. I., Park H. S., Park C. K., Choi H. S., Lee Y. M. 2004; Molecular characterization of PL97-1, the first Korean isolate of the porcine reproductive and respiratory syndrome virus. Virus Res 104:165–179 [CrossRef]
    [Google Scholar]
  16. Katow S. 2004; Molecular epidemiology of rubella virus in Asia: utility for reduction in the burden of diseases due to congenital rubella syndrome. Pediatr Int 46:207–213 [CrossRef]
    [Google Scholar]
  17. Katow S., Minahara H., Fukushima M., Yamaguchi Y. 1997a; Molecular epidemiology of rubella by nucleotide sequences of the rubella virus E1 gene in three East Asian countries. J Infect Dis 176:602–616 [CrossRef]
    [Google Scholar]
  18. Katow S., Minahara H., Ota T., Fukushima M. 1997b; Identification of strain-specific nucleotide sequences in E1 and NS4 genes of rubella virus vaccine strains in Japan. Vaccine 15:1579–1585 [CrossRef]
    [Google Scholar]
  19. Kinney R. M., Pfeffer M., Tsuchiya K. R., Chang G. J., Roehrig J. T. 1998; Nucleotide sequences of the 26S mRNAs of the viruses defining the Venezuelan equine encephalitis antigenic complex. Am J Trop Med Hyg 59:952–964
    [Google Scholar]
  20. Koonin E. V., Gorbalenya A. E., Purdy M. A., Rozanov M. N., Reyes G. R., Bradley D. W. 1992; Computer-assisted assignment of functional domains in the nonstructural polyprotein of hepatitis E virus: delineation of an additional group of positive-strand RNA plant and animal viruses. Proc Natl Acad Sci U S A 89:8259–8263 [CrossRef]
    [Google Scholar]
  21. Lund K. D., Chantler J. K. 2000; Mapping of genetic determinants of rubella virus associated with growth in joint tissue. J Virol 74:796–804 [CrossRef]
    [Google Scholar]
  22. Meyer S., Weiss G., von Haeseler A. 1999; Pattern of nucleotide substitution and rate heterogeneity in the hypervariable regions I and II of human mtDNA. Genetics 152:1103–1110
    [Google Scholar]
  23. Milne I., Wright F., Rowe G., Marshall D. F., Husmeier D., McGuire G. 2004; TOPALi: software for automatic identification of recombinant sequences within DNA multiple alignments. Bioinformatics 20:1806–1807 [CrossRef]
    [Google Scholar]
  24. Nishizawa T., Takahashi M., Mizuo H., Miyajima H., Gotanda Y., Okamoto H. 2003; Characterization of Japanese swine and human hepatitis E virus isolates of genotype IV with 99 % identity over the entire genome. J Gen Virol 84:1245–1251 [CrossRef]
    [Google Scholar]
  25. Pugachev K. V., Abernathy E. S., Frey T. K. 1997; Genomic sequence of the RA27/3 vaccine strain of rubella virus. Arch Virol 142:1165–1180 [CrossRef]
    [Google Scholar]
  26. Pugachev K. V., Galinski M. S., Frey T. K. 2000; Infectious cDNA clone of the RA27/3 vaccine strain of Rubella virus. Virology 273:189–197 [CrossRef]
    [Google Scholar]
  27. Reef S. E., Frey T. K., Theall K., Abernathy E., Burnett C. L., Icenogle J., McCauley M. M., Wharton M. 2002; The changing epidemiology of rubella in the 1990s: on the verge of elimination and new challenges for control and prevention. JAMA 287:464–472 [CrossRef]
    [Google Scholar]
  28. Robertson S. E., Featherstone D. A., Gacic-Dobo M., Hersh B. S. 2003; Rubella and congenital rubella syndrome: global update. Rev Panam Salud Publica 14:306–315
    [Google Scholar]
  29. Rozanov M. N., Koonin E. V., Gorbalenya A. E. 1992; Conservation of the putative methyltransferase domain: a hallmark of the ‘Sindbis-like’ supergroup of positive-strand RNA viruses. J Gen Virol 73:2129–2134 [CrossRef]
    [Google Scholar]
  30. Saitoh M., Shinkawa N., Shimada S., Segawa Y., Sadamasu K., Hasegawa M., Kato M., Kozawa K., Kuramoto T. other authors 2006; Phylogenetic analysis of envelope glycoprotein (E1) gene of rubella viruses prevalent in Japan in 2004. Microbiol Immunol 50:179–185 [CrossRef]
    [Google Scholar]
  31. Saleh S. M., Poidinger M., Mackenzie J. S., Broom A. K., Lindsay M. D., Hall R. A. 2003; Complete genomic sequence of the Australian south-west genotype of Sindbis virus: comparisons with other Sindbis strains and identification of a unique deletion in the 3′-untranslated region. Virus Genes 26:317–327 [CrossRef]
    [Google Scholar]
  32. Salemi M., Vandamme A.-M. 2003 The Phylogenetic Handbook: a Practical Approach to DNA and Protein Phylogeny Cambridge: Cambridge University Press;
    [Google Scholar]
  33. Strimmer K., von Haeseler A. 1996; Quartet puzzling: a quartet maximum-likelihood method for reconstructing tree topologies. Mol Biol Evol 13:964–969 [CrossRef]
    [Google Scholar]
  34. Takahashi K., Kang J. H., Ohnishi S., Hino K., Miyakawa H., Miyakawa Y., Maekubo H., Mishiro S. 2003; Full-length sequences of six hepatitis E virus isolates of genotypes III and IV from patients with sporadic acute or fulminant hepatitis in Japan. Intervirology 46:308–318 [CrossRef]
    [Google Scholar]
  35. Tamura K., Nei M. 1993; Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526
    [Google Scholar]
  36. Tarbatt C. J., Glasgow G. M., Mooney D. A., Sheahan B. J., Atkins G. J. 1997; Sequence analysis of the avirulent, demyelinating A7 strain of Semliki Forest virus. J Gen Virol 78:1551–1557
    [Google Scholar]
  37. van Cuyck H., Juge F., Roques P. 2003; Phylogenetic analysis of the first complete hepatitis E virus (HEV) genome from Africa. FEMS Immunol Med Microbiol 39:133–139 [CrossRef]
    [Google Scholar]
  38. WHO 2005; Standardization of the nomenclature for genetic characteristics of wild-type rubella viruses. Wkly Epidemiol Rec 80:126–132
    [Google Scholar]
  39. Xia X. 2000 Data Analysis in Molecular Biology and Evolution Boston: Kluwer Academic Publishers;
    [Google Scholar]
  40. Xia X., Xie Z. 2001; dambe: software package for data analysis in molecular biology and evolution. J Hered 92:371–373 [CrossRef]
    [Google Scholar]
  41. Yang Z. 1994; Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J Mol Evol 39:306–314 [CrossRef]
    [Google Scholar]
  42. Yang D. K., Kim B. H., Kweon C. H., Kwon J. H., Lim S. I., Han H. R. 2004; Molecular characterization of full-length genome of Japanese encephalitis virus (KV1899) isolated from pigs in Korea. J Vet Sci 5:197–205
    [Google Scholar]
  43. Zheng D. P., Frey T. K., Icenogle J., Katow S., Abernathy E. S., Song K. J., Xu W. B., Yarulin V., Desjatskova R. G. other authors 2003a; Global distribution of rubella virus genotypes. Emerg Infect Dis 9:1523–1530 [CrossRef]
    [Google Scholar]
  44. Zheng D. P., Zhou Y. M., Zhao K., Han Y. R., Frey T. K. 2003b; Characterization of genotype II rubella virus strains. Arch Virol 148:1835–1850 [CrossRef]
    [Google Scholar]
  45. Zheng D. P., Zhu H., Revello M. G., Gerna G., Frey T. K. 2003c; Phylogenetic analysis of rubella virus isolated during a period of epidemic transmission in Italy, 1991-1997. J Infect Dis 187:1587–1597 [CrossRef]
    [Google Scholar]
/content/journal/jgv/10.1099/vir.0.82495-0
Loading
/content/journal/jgv/10.1099/vir.0.82495-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error