1887

Abstract

The phosphatidylinositol 3-kinase (PI3K)/Akt signalling pathway has attracted much recent interest due to its central role in modulating diverse downstream signalling pathways associated with cell survival, proliferation, differentiation, morphology and apoptosis. An increasing amount of information has demonstrated that many viruses activate the PI3K/Akt pathway to augment their efficient replication. In this study, the effect of the PI3K/Akt signalling pathway on influenza virus propagation was investigated. It was found that Akt phosphorylation was elevated in the late phase of influenza A/PR/8/34 infection in human lung carcinoma cells (A549). The PI3K-specific inhibitor LY294002 could suppress Akt phosphorylation, suggesting that influenza A virus-induced Akt phosphorylation is PI3K-dependent. UV-irradiated influenza virus failed to induce Akt phosphorylation, indicating that viral attachment and entry were not sufficient to trigger PI3K/Akt pathway activation. Blockage of PI3K/Akt activation by LY294002 and overexpression of the general receptor for phosphoinositides-1 PH domain (Grp1-PH) led to a reduction in virus yield. Moreover, in the presence of LY294002, viral RNA synthesis and viral protein expression were suppressed and, possibly as a consequence of low NP and M1 protein level, viral RNP nuclear export was also suppressed. These data suggest that the PI3K/Akt signalling pathway plays a role in influenza virus propagation.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82483-0
2007-03-01
2019-11-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/3/942.html?itemId=/content/journal/jgv/10.1099/vir.0.82483-0&mimeType=html&fmt=ahah

References

  1. Alessi, D. R., Andjelkovic, M., Caudwell, B., Cron, P., Morrice, N., Cohen, P. & Hemmings, B. A. ( 1996; ). Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J 15, 6541–6551.
    [Google Scholar]
  2. Arora, D. J. & Gasse, N. ( 1998; ). Influenza virus hemagglutinin stimulates the protein kinase C activity of human polymorphonuclear leucocytes. Arch Virol 143, 2029–2037.[CrossRef]
    [Google Scholar]
  3. Bui, M., Wills, E. G., Helenius, A. & Whittaker, G. R. ( 2000; ). Role of the influenza virus M1 protein in nuclear export of viral ribonucleoproteins. J Virol 74, 1781–1786.[CrossRef]
    [Google Scholar]
  4. Burnette, B., Yu, G. & Felsted, R. L. ( 1993; ). Phosphorylation of HIV-1 gag proteins by protein kinase C. J Biol Chem 268, 8698–8703.
    [Google Scholar]
  5. Carpenter, C. L., Auger, K. R., Chanudhuri, M., Yoakim, M., Schaffhausen, B., Shoelson, S. & Cantley, L. C. ( 1993; ). Phosphoinositide 3-kinase is activated by phosphopeptides that bind to the SH2 domains of the 85-kDa subunit. J Biol Chem 268, 9478–9483.
    [Google Scholar]
  6. Coito, C., Diamond, D. L., Neddermann, P., Korth, M. J. & Katze, M. G. ( 2004; ). High-throughput screening of the yeast kinome: identification of human serine/threonine protein kinases that phosphorylate the hepatitis C virus NS5A protein. J Virol 78, 3502–3513.[CrossRef]
    [Google Scholar]
  7. Constantinescu, S. N., Cernescu, C. D. & Popescu, L. M. ( 1991; ). Effects of protein kinase C inhibitors on viral entry and infectivity. FEBS Lett 292, 31–33.[CrossRef]
    [Google Scholar]
  8. Cooray, S. ( 2004; ). The pivotal role of phosphatidylinositol 3-kinase-Akt signal transduction in virus survival. J Gen Virol 85, 1065–1076.[CrossRef]
    [Google Scholar]
  9. Datta, S. R., Brunet, A. & Greenberg, M. E. ( 1999; ). Cellular survival: a play in three Akts. Genes Dev 13, 2905–2927.[CrossRef]
    [Google Scholar]
  10. Ehrhardt, C., Marjuki, H., Wolff, T., Nurnberg, B., Planz, O., Pleschka, S. & Ludwig, S. ( 2006; ). Bivalent role of the phosphatidylinositol-3-kinase (PI3K) during influenza virus infection and host cell defence. Cell Microbiol 8, 1336–1348.[CrossRef]
    [Google Scholar]
  11. Esfandiarei, M., Luo, H., Yanagawa, B., Suarez, A., Dabiri, D., Zhang, J. & McManus, B. M. ( 2004; ). Protein kinase B/Akt regulates coxsackievirus B3 replication through a mechanism which is not caspase dependent. J Virol 78, 4289–4298.[CrossRef]
    [Google Scholar]
  12. Filippa, N., Sable, C. L., Filloux, C., Hemmings, B. & Van Obberghen, E. ( 1999; ). Mechanism of protein kinase B activation by cyclic AMP-dependent protein kinase. Mol Cell Biol 19, 4989–5000.
    [Google Scholar]
  13. Geiss, G. K., An, M. C., Bumgarner, R. E., Hammersmark, E., Cunningham, D. & Katze, M. G. ( 2001; ). Global impact of influenza virus on cellular pathways is mediated by both replication-dependent and -independent events. J Virol 75, 4321–4331.[CrossRef]
    [Google Scholar]
  14. Gingras, A. C., Kennedy, S. G., O'Leary, M. A., Sonenberg, N. & Hay, N. ( 1998; ). 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. Genes Dev 12, 502–513.[CrossRef]
    [Google Scholar]
  15. Gray, A., Van Der Kaay, J. & Downes, C. P. ( 1999; ). The pleckstrin homology domains of protein kinase B and GRP1 (general receptor for phosphoinositides-1) are sensitive and selective probes for the cellular detection of phosphatidylinositol 3,4-bisphosphate and/or phosphatidylinositol 3,4,5-trisphosphate in vivo. Biochem J 344, 929–936.[CrossRef]
    [Google Scholar]
  16. Hale, B. G., Jackson, D., Chen, Y. H., Lamb, R. A. & Randall, R. E. ( 2006; ). Influenza A virus NS1 protein binds p85beta and activates phosphatidylinositol-3-kinase signaling. Proc Natl Acad Sci U S A 103, 14194–14199.[CrossRef]
    [Google Scholar]
  17. Hiles, I. D., Otsu, M., Volinia, S., Fry, M. J., Gout, I., Dhand, R., Panayotou, G., Ruiz-Larrea, F., Thompson, A. & other authors ( 1992; ). Phosphatidylinositol 3-kinase: structure and expression of the 110 kd catalytic subunit. Cell 70, 419–429.[CrossRef]
    [Google Scholar]
  18. Hoffmann, E., Stech, J., Guan, Y., Webster, R. G. & Perez, D. R. ( 2001; ). Universal primer set for the full-length amplification of all influenza A viruses. Arch Virol 146, 2275–2289.[CrossRef]
    [Google Scholar]
  19. Hoffmann, E., Krauss, S., Perez, D., Webby, R. & Webster, R. G. ( 2002; ). Eight-plasmid system for rapid generation of influenza virus vaccines. Vaccine 20, 3165–3170.[CrossRef]
    [Google Scholar]
  20. Johnson, R. A., Wang, X., Ma, X. L., Huong, S. M. & Huang, E. S. ( 2001; ). Human cytomegalovirus up-regulates the phosphatidylinositol 3-kinase (PI3-K) pathway: inhibition of PI3-K activity inhibits viral replication and virus-induced signaling. J Virol 75, 6022–6032.[CrossRef]
    [Google Scholar]
  21. Kandel, E. S. & Hay, N. ( 1999; ). The regulation and activities of the multifunctional serine/threonine kinase Akt/PKB. Exp Cell Res 253, 210–229.[CrossRef]
    [Google Scholar]
  22. King, W. G., Mattaliano, M. D., Chan, T. O., Tsichlis, P. N. & Brugge, J. S. ( 1997; ). Phosphatidylinositol 3-kinase is required for integrin-stimulated AKT and Raf-1/mitogen-activated protein kinase pathway activation. Mol Cell Biol 17, 4406–4418.
    [Google Scholar]
  23. Kistner, O., Muller, K. & Scholtissek, C. ( 1989; ). Differential phosphorylation of the nucleoprotein of influenza A viruses. J Gen Virol 70, 2421–2431.[CrossRef]
    [Google Scholar]
  24. Kujime, K., Hashimoto, S., Gon, Y., Shimizu, K. & Horie, T. ( 2000; ). p38 mitogen-activated protein kinase and c-jun-NH2-terminal kinase regulate RANTES production by influenza virus-infected human bronchial epithelial cells. J Immunol 164, 3222–3228.[CrossRef]
    [Google Scholar]
  25. Lamb, R. A. & Krug, R. M. ( 2001; ). Orthomyxoviridae: the viruses and their replication. In Fields Virology, 4th edn, pp. 1487–1531. Edited by D. M. Knipe & P. M. Howley. Philadelphia, PA: Lippincott Williams & Wilkins.
  26. Ludwig, S., Pleschka, S. & Wolff, T. ( 1999; ). A fatal relationship – influenza virus interactions with the host cell. Viral Immunol 12, 175–196.[CrossRef]
    [Google Scholar]
  27. Ludwig, S., Ehrhardt, C., Neumeier, E. R., Kracht, M., Rapp, U. R. & Pleschka, S. ( 2001; ). Influenza virus-induced AP-1-dependent gene expression requires activation of the JNK signaling pathway. J Biol Chem 276, 10990–10998.[CrossRef]
    [Google Scholar]
  28. Ludwig, S., Planz, O., Pleschka, S. & Wolff, T. ( 2003; ). Influenza-virus-induced signaling cascades: targets for antiviral therapy? Trends Mol Med 9, 46–52.[CrossRef]
    [Google Scholar]
  29. Mannova, P. & Beretta, L. ( 2005; ). Activation of the N-Ras-PI3K-Akt-mTOR pathway by hepatitis C virus: control of cell survival and viral replication. J Virol 79, 8742–8749.[CrossRef]
    [Google Scholar]
  30. Martin, K. & Helenius, A. ( 1991; ). Nuclear transport of influenza virus ribonucleoproteins: the viral matrix protein (M1) promotes export and inhibits import. Cell 67, 117–130.[CrossRef]
    [Google Scholar]
  31. Momose, F., Basler, C. F., O'Neill, R. E., Iwamatsu, A., Palese, P. & Nagata, K. ( 2001; ). Cellular splicing factor RAF-2p48/NPI-5/BAT1/UAP56 interacts with the influenza virus nucleoprotein and enhances viral RNA synthesis. J Virol 75, 1899–1908.[CrossRef]
    [Google Scholar]
  32. Momose, F., Naito, T., Yano, K., Sugimoto, S., Morikawa, Y. & Nagata, K. ( 2002; ). Identification of Hsp90 as a stimulatory host factor involved in influenza virus RNA synthesis. J Biol Chem 277, 45306–45314.[CrossRef]
    [Google Scholar]
  33. Pleschka, S., Wolff, T., Ehrhardt, C., Hobom, G., Planz, O., Rapp, U. R. & Ludwig, S. ( 2001; ). Influenza virus propagation is impaired by inhibition of the Raf/MEK/ERK signalling cascade. Nat Cell Biol 3, 301–305.[CrossRef]
    [Google Scholar]
  34. Root, C. N., Wills, E. G., McNair, L. L. & Whittaker, G. R. ( 2000; ). Entry of influenza viruses into cells is inhibited by a highly specific protein kinase C inhibitor. J Gen Virol 81, 2697–2705.
    [Google Scholar]
  35. Rothmann, K., Schnolzer, M., Radziwill, G., Hildt, E., Moelling, K. & Schaller, H. ( 1998; ). Host cell-virus cross talk: phosphorylation of a hepatitis B virus envelope protein mediates intracellular signaling. J Virol 72, 10138–10147.
    [Google Scholar]
  36. Rott, O., Charreire, J., Semichon, M., Bismuth, G. & Cash, E. ( 1995; ). B cell superstimulatory influenza virus (H2-subtype) induces B cell proliferation by a PKC-activating, Ca(2+)-independent mechanism. J Immunol 154, 2092–2103.
    [Google Scholar]
  37. Sanz-Ezquerro, J. J., Fernández Santarén, J., Sierra, T., Aragón, T., Ortega, J., Ortín, J., Smith, G. L. & Nieto, A. ( 1998; ). The PA influenza virus polymerase subunit is a phosphorylated protein. J Gen Virol 79, 471–478.
    [Google Scholar]
  38. Sato, S., Fujita, N. & Tsuruo, T. ( 2000; ). Modulation of Akt kinase activity by binding to Hsp90. Proc Natl Acad Sci U S A 97, 10832–10837.[CrossRef]
    [Google Scholar]
  39. Shin, Y., Liu, Q., Tikoo, S. K., Babiuk, L. A. & Zhou, Y. ( 2007; ). Influenza A virus NS1 protein activates the phosphatidylinositol 3-kinase (PI3K)/Akt pathway by direct interaction with the p85 subunit of PI3K. J Gen Virol 88, 13–18.[CrossRef]
    [Google Scholar]
  40. Sieczkarski, S. B., Brown, H. A. & Whittaker, G. R. ( 2003; ). Role of protein kinase C betaII in influenza virus entry via late endosomes. J Virol 77, 460–469.[CrossRef]
    [Google Scholar]
  41. Skolnik, E. Y., Margolis, B., Mohammadi, M., Lowenstein, E., Fischer, R., Drepps, A., Ullrich, A. & Schlessinger, J. ( 1991; ). Cloning of PI3 kinase-associated p85 utilizing a novel method for expression/cloning of target proteins for receptor tyrosine kinases. Cell 65, 83–90.[CrossRef]
    [Google Scholar]
  42. Stoyanov, B., Volinia, S., Hanck, T., Rubio, I., Loubtchenkov, M., Malek, D., Stoyanova, S., Vanhaesebroeck, B., Dhand, R. & other authors ( 1995; ). Cloning and characterization of a G protein-activated human phosphoinositide-3 kinase. Science 269, 690–693.[CrossRef]
    [Google Scholar]
  43. Street, A., Macdonald, A., Crowder, K. & Harris, M. ( 2004; ). The hepatitis C virus NS5A protein activates a phosphoinositide 3-kinase-dependent survival signaling cascade. J Biol Chem 279, 12232–12241.[CrossRef]
    [Google Scholar]
  44. Toker, A. & Cantley, L. C. ( 1997; ). Signalling through the lipid products of phosphoinositide-3-OH kinase. Nature 387, 673–676.[CrossRef]
    [Google Scholar]
  45. Vlahos, C. J., Matter, W. F., Hui, K. Y. & Brown, R. F. ( 1994; ). A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J Biol Chem 269, 5241–5248.
    [Google Scholar]
  46. Vogel, U., Kunerl, M. & Scholtissek, C. ( 1994; ). Influenza A virus late mRNAs are specifically retained in the nucleus in the presence of a methyltransferase or a protein kinase inhibitor. Virology 198, 227–233.[CrossRef]
    [Google Scholar]
  47. Wurzer, W. J., Planz, O., Ehrhardt, C., Giner, M., Silberzahn, T., Pleschka, S. & Ludwig, S. ( 2003; ). Caspase 3 activation is essential for efficient influenza virus propagation. EMBO J 22, 2717–2728.[CrossRef]
    [Google Scholar]
  48. Yang, X. & Gabuzda, D. ( 1998; ). Mitogen-activated protein kinase phosphorylates and regulates the HIV-1 Vif protein. J Biol Chem 273, 29879–29887.[CrossRef]
    [Google Scholar]
  49. Yang, X. & Gabuzda, D. ( 1999; ). Regulation of human immunodeficiency virus type 1 infectivity by the ERK mitogen-activated protein kinase signaling pathway. J Virol 73, 3460–3466.
    [Google Scholar]
  50. Yang, X., Goncalves, J. & Gabuzda, D. ( 1996; ). Phosphorylation of Vif and its role in HIV-1 replication. J Biol Chem 271, 10121–10129.[CrossRef]
    [Google Scholar]
  51. Yao, R. & Cooper, G. M. ( 1995; ). Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor. Science 267, 2003–2006.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82483-0
Loading
/content/journal/jgv/10.1099/vir.0.82483-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error