1887

Abstract

Internal initiation of translation from the human rhinovirus-2 (HRV-2) internal ribosome entry site (IRES) is dependent upon host cell -acting factors. The multiple cold shock domain protein Unr and the polypyrimidine tract-binding protein have been identified as synergistic activators of HRV-2 IRES-driven translation. In order to investigate the mechanism by which Unr acts in this process, we have mapped the binding sites of Unr to two distinct secondary structure domains of the HRV-2 IRES, and have identified specific nucleotides that are involved in the binding of Unr to the IRES. The data suggest that Unr acts as an RNA chaperone to maintain a complex tertiary IRES structure required for translational competency.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82463-0
2007-11-01
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/11/3043.html?itemId=/content/journal/jgv/10.1099/vir.0.82463-0&mimeType=html&fmt=ahah

References

  1. Ali, I. K., McKendrick, L., Morley, S. J. & Jackson, R. J. ( 2001; ). Activity of the hepatitis A virus IRES requires association between the Cap-binding translation initiation factor (eIF4E) and eIF4G. J Virol 75, 7854–7863.[CrossRef]
    [Google Scholar]
  2. Andino, R., Rieckhof, G. E. & Baltimore, D. ( 1990; ). A functional ribonucleoprotein complex forms around the 5′ end of poliovirus RNA. Cell 63, 369–380.[CrossRef]
    [Google Scholar]
  3. Bailly, J.-L., Borman, A. M., Peigue-Lafeuille, H. & Kean, K. M. ( 1996; ). Natural isolates of ECHO virus type-25 with extensive variations in IRES sequences and different translational efficiencies. Virology 215, 83–96.[CrossRef]
    [Google Scholar]
  4. Belsham, G. J. & Jackson, R. J. ( 2000; ). Translation initiation on picornavirus RNA. In: Translational Control of Gene Expression, pp. 869–900. Edited by N. Sonenberg, J. W. B. Hershey & M. B. Mathews. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
  5. Borman, A. & Jackson, R. J. ( 1992; ). Initiation of translation of human rhinovirus RNA: mapping the internal ribosome entry site. Virology 188, 685–696.[CrossRef]
    [Google Scholar]
  6. Boussadia, O., Jacquemin-Sablon, H. & Dautry, F. ( 1993; ). Exon skipping in the expression of the gene immediately upstream of N-ras (unr/NRU). Biochim Biophys Acta 1172, 64–72.[CrossRef]
    [Google Scholar]
  7. Boussadia, O., Amiot, F., Cases, S., Triqueneaux, G., Jacquemin-Sablon, H. & Dautry, F. ( 1997; ). Transcription of unr (upstream of N-ras) down-modulates N-ras expression in vivo. FEBS Lett 420, 20–24.[CrossRef]
    [Google Scholar]
  8. Boussadia, O., Niepmann, M., Creancier, L., Prats, A.-C., Dautry, F. & Jacquemin-Sablon, H. ( 2003; ). Unr is required in vivo for efficient initiation of translation from the internal ribosome entry sites of both rhinovirus and poliovirus. J Virol 77, 3353–3359.[CrossRef]
    [Google Scholar]
  9. Brown, B. A. & Ehrenfeld, E. ( 1979; ). Translation of poliovirus in vitro: changes in cleavage pattern and initiation sites by ribosomal salt wash. Virology 97, 396–405.[CrossRef]
    [Google Scholar]
  10. Brown, E. C. & Jackson, R. J. ( 2004; ). All five cold shock domains of unr (upstream of N- ras) are required for stimulation of human rhinovirus RNA translation. J Gen Virol 85, 2279–2287.[CrossRef]
    [Google Scholar]
  11. Campbell, S. A., Lin, J., Dobrikova, E. Y. & Gromeier, M. ( 2005; ). Genetic determinants of cell type-specific poliovirus propagation in HEK 293 cells. J Virol 79, 6281–6290.[CrossRef]
    [Google Scholar]
  12. Chang, T. C., Yamashita, A., Chen, C. Y., Yamashita, Y., Zhu, W., Durdan, S., Kahvejian, A., Sonenberg, N. & Shyu, A. B. ( 2004; ). UNR, a new partner of poly(A) binding protein, plays a key role in translationally coupled mRNA turnover mediated by the c-fos major coding-region determinant. Genes Dev 18, 2010–2023.[CrossRef]
    [Google Scholar]
  13. Dasso, M. C. & Jackson, R. J. ( 1989; ). On the fidelity of mRNA translation in the nuclease-treated rabbit reticulocyte lysate system. Nucleic Acids Res 17, 3129–3144.[CrossRef]
    [Google Scholar]
  14. Dinur, M., Kilav, R., Sela-Brown, A., Jacquemin-Sablon, H. & Naveh-Many, T. ( 2006; ). In vitro evidence that upstream of N-ras participates in the regulation of parathyroid hormone messenger ribonucleic acid stability. Mol Endocrinol 20, 1652–1660.[CrossRef]
    [Google Scholar]
  15. Doniger, J., Landsman, D., Gonda, M. A. & Wistow, G. ( 1992; ). The product of unr, a highly conserved gene upstream of N-ras, contains multiple repeats similar to the cold-shock domain (CSD), a putative DNA-binding motif. New Biol 4, 389–395.
    [Google Scholar]
  16. Dorner, A. J., Semler, B. L., Jackson, R. J., Hanecak, R., Duprey, E. & Wimmer, E. ( 1984; ). In vitro translation of poliovirus RNA: utilization of internal initiation sites in reticulocyte lysate. J Virol 50, 507–514.
    [Google Scholar]
  17. Gutiérrez, A. L., Denova-Ocampo, M., Racaniello, V. R. & del Angel, R. M. ( 1997; ). Attenuating mutations in the poliovirus 5′ untranslated region alter its interaction with polypyrimidine tract-binding protein. J Virol 71, 3826–3833.
    [Google Scholar]
  18. Hellen, C. U., Pestova, T. V., Litterst, M. & Wimmer, E. ( 1994; ). The cellular polypeptide p57 (pyrimidine tract-binding protein) binds to multiple sites in the poliovirus 5′ nontranslated region. J Virol 68, 941–950.
    [Google Scholar]
  19. Hunt, S. L. & Jackson, R. J. ( 1999; ). Polypyrimidine-tract binding protein (PTB) is necessary, but not sufficient, for efficient internal initiation of translation of human rhinovirus-2 RNA. RNA 5, 344–359.[CrossRef]
    [Google Scholar]
  20. Hunt, S. L., Hsuan, J. J., Totty, N. & Jackson, R. J. ( 1999; ). Unr, a cellular cytoplasmic RNA-binding protein with five cold-shock domains, is required for internal initiation of translation of human rhinovirus RNA. Genes Dev 13, 437–448.[CrossRef]
    [Google Scholar]
  21. Jackson, R. J. & Hunt, T. ( 1983; ). Preparation and use of nuclease-treated rabbit reticulocyte lysates for the translation of eukaryotic messenger RNA. Methods Enzymol 96, 50–74.
    [Google Scholar]
  22. Jackson, R. J. & Kaminski, A. ( 1995; ). Internal initiation of translation in eukaryotes: the picornavirus paradigm and beyond. RNA 1, 985–1000.
    [Google Scholar]
  23. Jacquemin-Sablon, H., Triqueneaux, G., Deschamps, S., le Maire, M., Doniger, J. & Dautry, F. ( 1994; ). Nucleic acid binding and intracellular localisation of Unr, a protein with five cold shock domains. Nucleic Acids Res 22, 2643–2650.[CrossRef]
    [Google Scholar]
  24. Jang, S. K., Krausslich, H.-G., Nicklin, M. J. H., Duke, G. M., Palmenberg, A. C. & Wimmer, E. ( 1988; ). A segment of the 5′ non-translated region of EMC virus RNA directs internal entry of ribosomes during in vitro translation. J Virol 62, 2636–2643.
    [Google Scholar]
  25. Kaminski, A., Howell, M. T. & Jackson, R. J. ( 1990; ). Initiation of encephalomyocarditis virus RNA translation: the authentic initiation site is not selected by a scanning mechanism. EMBO J 9, 3753–3759.
    [Google Scholar]
  26. Le, S. Y. & Zuker, M. ( 1990; ). Common structures of the 5′ non-coding RNA in enteroviruses and rhinoviruses. Thermodynamical stability and statistical significance. J Mol Biol 216, 729–741.[CrossRef]
    [Google Scholar]
  27. Malnou, C. E., Pöyry, T. A., Jackson, R. J. & Kean, K. M. ( 2002; ). Poliovirus internal ribosome entry segment structure alterations that specifically affect function in neuronal cells: molecular genetic analysis. J Virol 76, 10617–10626.[CrossRef]
    [Google Scholar]
  28. Merrill, M. K. & Gromeier, M. ( 2006; ). The double-stranded RNA binding protein 76:NF45 heterodimer inhibits translation initiation at the rhinovirus type 2 internal ribosome entry site. J Virol 80, 6936–6942.[CrossRef]
    [Google Scholar]
  29. Mitchell, S. A., Brown, E. C., Coldwell, M. J., Jackson, R. J. & Willis, A. E. ( 2001; ). Protein factor requirements of the Apaf-1 internal ribosome entry segment: roles of polypyrimidine tract binding protein and upstream of N-ras. Mol Cell Biol 21, 3364–3374.[CrossRef]
    [Google Scholar]
  30. Mitchell, S. A., Spriggs, K. A., Coldwell, M. J., Jackson, R. J. & Willis, A. E. ( 2003; ). The Apaf-1 internal ribosome entry segment attains the correct structural conformation for function via interactions with PTB and Unr. Mol Cell 11, 757–771.[CrossRef]
    [Google Scholar]
  31. Nicholson, R., Pelletier, J., Le, S.-Y. & Sonenberg, N. ( 1991; ). Structural and functional analysis of the ribosome landing pad of poliovirus type 2: in vivo translation studies. J Virol 65, 5886–5894.
    [Google Scholar]
  32. Ohlmann, T., Rau, M., Pain, V. M. & Morley, S. J. ( 1996; ). The C-terminal domain of eukaryotic protein synthesis initiation factor eIF4G is sufficient to support cap-independent translation in the absence of eIF4E. EMBO J 15, 1371–1382.
    [Google Scholar]
  33. Patel, G. P., Ma, S. & Bag, J. ( 2005; ). The autoregulatory translational control element of poly(A) binding protein mRNA forms a heteromeric ribonucleoprotein complex. Nucleic Acids Res 33, 7074–7089.[CrossRef]
    [Google Scholar]
  34. Pelletier, J. & Sonenberg, N. ( 1988; ). Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334, 320–325.[CrossRef]
    [Google Scholar]
  35. Pestova, T. V., Shatsky, I. N. & Hellen, C. U. T. ( 1996; ). Functional dissection of eukaryotic initiation factor 4F: the 4A subunit and the central domain of the 4G subunit are sufficient to mediate internal entry of 43S preinitiation complexes. Mol Cell Biol 16, 6870–6878.
    [Google Scholar]
  36. Skinner, M. A., Racaniello, V. R., Dunn, G., Cooper, J., Minor, P. D. & Almond, J. W. ( 1989; ). New model for the secondary structure of the 5′ non-coding RNA of poliovirus is supported by biochemical and genetic data that also show that RNA secondary structure is important in neurovirulence. J Mol Biol 207, 379–392.[CrossRef]
    [Google Scholar]
  37. Svitkin, Y. V. & Agol, V. I. ( 1978; ). Complete translation of encephalomyocarditis virus RNA and faithful cleavage of virus-specific proteins in a cell-free system from Krebs-2 cells. FEBS Lett 87, 7–11.[CrossRef]
    [Google Scholar]
  38. Svitkin, Y. V., Maslova, S. V. & Agol, V. I. ( 1985; ). The genomes of attenuated and virulent poliovirus strains differ in their in vitro translation efficiencies. Virology 147, 243–252.[CrossRef]
    [Google Scholar]
  39. Svitkin, Y. V., Pestova, T. V., Maslova, S. V. & Agol, V. I. ( 1988; ). Point mutations modify the response of poliovirus RNA to a translation initiation factor: a comparison of neurovirulent and attenuated strains. Virology 166, 394–404.[CrossRef]
    [Google Scholar]
  40. Tinton, S. A., Schepens, B., Bruynooghe, Y., Beyaert, R. & Cornelis, S. ( 2005; ). Regulation of the cell-cycle-dependent internal ribosome entry site of the PITSLRE protein kinase: roles of Unr (upstream of N-ras) protein and phosphorylated translation initiation factor eIF-2alpha. Biochem J 385, 155–163.[CrossRef]
    [Google Scholar]
  41. Triqueneaux, G., Velten, M., Franzon, P., Dautry, F. & Jacquemin-Sablon, H. ( 1999; ). RNA binding specificity of Unr, a protein with five cold shock domains. Nucleic Acids Res 27, 1926–1934.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82463-0
Loading
/content/journal/jgv/10.1099/vir.0.82463-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error