A reverse-genetics system for using T7 RNA polymerase Free

Abstract

The currently available reverse-genetics systems for are all based on transcription of genomic RNA by RNA polymerase I, but the species specificity of this polymerase is a disadvantage. A reverse-genetics vector containing a T7 RNA polymerase promoter, hepatitis delta virus ribozyme sequence and T7 RNA polymerase terminator sequence has been developed. To achieve optimal expression in minigenome assays, it was determined that viral RNA should be inserted in this vector in the negative-sense orientation with two additional G residues downstream of the T7 RNA polymerase promoter. It was also shown that expression of the minigenome was more efficient when a T7 RNA polymerase with a nuclear-localization signal was used. By using this reverse-genetics system, recombinant influenza virus A/PR/8/34 was produced more efficiently than by using a similar polymerase I-based reverse-genetics system. Furthermore, influenza virus A/NL/219/03 could be rescued from 293T, MDCK and QT6 cells. Thus, a reverse-genetics system for the rescue of has been developed, which will be useful for fundamental research and vaccine seed strain production in a variety of cell lines.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82452-0
2007-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/4/1281.html?itemId=/content/journal/jgv/10.1099/vir.0.82452-0&mimeType=html&fmt=ahah

References

  1. Basler C. F., Wang X., Muhlberger E., Volchkov V., Paragas J., Klenk H. D., Garcia-Sastre A., Palese P. 2000; The Ebola virus VP35 protein functions as a type I IFN antagonist. Proc Natl Acad Sci U S A 97:12289–12294 [CrossRef]
    [Google Scholar]
  2. Blakqori G., Weber F. 2005; Efficient cDNA-based rescue of La Crosse bunyaviruses expressing or lacking the nonstructural protein NSs. J Virol 79:10420–10428 [CrossRef]
    [Google Scholar]
  3. Conzelmann K. K. 2004; Reverse genetics of mononegavirales. Curr Top Microbiol Immunol 283:1–41
    [Google Scholar]
  4. de Wit E., Spronken M. I., Bestebroer T. M., Rimmelzwaan G. F., Osterhaus A. D., Fouchier R. A. 2004; Efficient generation and growth of influenza virus A/PR/8/34 from eight cDNA fragments. Virus Res 103:155–161 [CrossRef]
    [Google Scholar]
  5. Dunn J. J., Krippl B., Bernstein K. E., Westphal H., Studier F. W. 1988; Targeting bacteriophage T7 RNA polymerase to the mammalian cell nucleus. Gene 68:259–266 [CrossRef]
    [Google Scholar]
  6. Enami M., Luytjes W., Krystal M., Palese P. 1990; Introduction of site-specific mutations into the genome of influenza virus. Proc Natl Acad Sci U S A 87:3802–3805 [CrossRef]
    [Google Scholar]
  7. Fodor E., Devenish L., Engelhardt O. G., Palese P., Brownlee G. G., Garcia-Sastre A. 1999; Rescue of influenza A virus from recombinant DNA. J Virol 73:9679–9682
    [Google Scholar]
  8. Fouchier R. A., Schneeberger P. M., Rozendaal F. W., Broekman J. M., Kemink S. A., Munster V., Kuiken T., Rimmelzwaan G. F., Schutten M. other authors 2004; Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. Proc Natl Acad Sci U S A 101:1356–1361 [CrossRef]
    [Google Scholar]
  9. Hatta M., Gao P., Halfmann P., Kawaoka Y. 2001; Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science 293:1840–1842 [CrossRef]
    [Google Scholar]
  10. Hoffmann E., Neumann G., Hobom G., Webster R. G., Kawaoka Y. 2000a; ‘Ambisense’ approach for the generation of influenza A virus: vRNA and mRNA synthesis from one template. Virology 267:310–317 [CrossRef]
    [Google Scholar]
  11. Hoffmann E., Neumann G., Kawaoka Y., Hobom G., Webster R. G. 2000b; A DNA transfection system for generation of influenza A virus from eight plasmids. Proc Natl Acad Sci U S A 97:6108–6113 [CrossRef]
    [Google Scholar]
  12. Ikegami T., Won S., Peters C. J., Makino S. 2006; Rescue of infectious Rift Valley fever virus entirely from cDNA, analysis of virus lacking the NSs gene, and expression of a foreign gene. J Virol 80:2933–2940 [CrossRef]
    [Google Scholar]
  13. Luytjes W., Krystal M., Enami M., Pavin J. D., Palese P. 1989; Amplification, expression, and packaging of foreign gene by influenza virus. Cell 59:1107–1113 [CrossRef]
    [Google Scholar]
  14. Massin P., van der Werf S., Naffakh N. 2001; Residue 627 of PB2 is a determinant of cold sensitivity in RNA replication of avian influenza viruses. J Virol 75:5398–5404 [CrossRef]
    [Google Scholar]
  15. Massin P., Rodrigues P., Marasescu M., van der Werf S., Naffakh N. 2005; Cloning of the chicken RNA polymerase I promoter and use for reverse genetics of influenza A viruses in avian cells. J Virol 79:13811–13816 [CrossRef]
    [Google Scholar]
  16. Moscovici C., Moscovici M. G., Jimenez H., Lai M. M., Hayman M. J., Vogt P. K. 1977; Continuous tissue culture cell lines derived from chemically induced tumors of Japanese quail. Cell 11:95–103 [CrossRef]
    [Google Scholar]
  17. Neumann G., Watanabe T., Ito H., Watanabe S., Goto H., Gao P., Hughes M., Perez D. R., Donis R. other authors 1999; Generation of influenza A viruses entirely from cloned cDNAs. Proc Natl Acad Sci U S A 96:9345–9350 [CrossRef]
    [Google Scholar]
  18. Neumann G., Fujii K., Kino Y., Kawaoka Y. 2005; An improved reverse genetics system for influenza A virus generation and its implications for vaccine production. Proc Natl Acad Sci U S A 102:16825–16829 [CrossRef]
    [Google Scholar]
  19. Niwa H., Yamamura K., Miyazaki J. 1991; Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108:193–199 [CrossRef]
    [Google Scholar]
  20. Pattnaik A. K., Ball L. A., LeGrone A. W., Wertz G. W. 1992; Infectious defective interfering particles of VSV from transcripts of a cDNA clone. Cell 69:1011–1020 [CrossRef]
    [Google Scholar]
  21. Pear W. S., Nolan G. P., Scott M. L., Baltimore D. 1993; Production of high-titer helper-free retroviruses by transient transfection. Proc Natl Acad Sci U S A 90:8392–8396 [CrossRef]
    [Google Scholar]
  22. Perez D. R., Donis R. O. 1998; The matrix 1 protein of influenza A virus inhibits the transcriptase activity of a model influenza reporter genome in vivo. Virology 249:52–61 [CrossRef]
    [Google Scholar]
  23. Rimmelzwaan G. F., Baars M., Claas E. C., Osterhaus A. D. 1998; Comparison of RNA hybridization, hemagglutination assay, titration of infectious virus and immunofluorescence as methods for monitoring influenza virus replication in vitro. J Virol Methods 74:57–66 [CrossRef]
    [Google Scholar]
  24. Rogers G. N., Daniels R. S., Skehel J. J., Wiley D. C., Wang X. F., Higa H. H., Paulson J. C. 1985; Host-mediated selection of influenza virus receptor variants. Sialic acid- α 2,6Gal-specific clones of A/duck/Ukraine/1/63 revert to sialic acid- α 2,3Gal-specific wild type in ovo . J Biol Chem 260:7362–7367
    [Google Scholar]
  25. Sanchez A. B., de la Torre J. C. 2006; Rescue of the prototypic arenavirus LCMV entirely from plasmid. Virology 350:370–380 [CrossRef]
    [Google Scholar]
  26. Schild G. C., Oxford J. S., de Jong J. C., Webster R. G. 1983; Evidence for host-cell selection of influenza virus antigenic variants. Nature 303:706–709 [CrossRef]
    [Google Scholar]
  27. Schnell M. J., Mebatsion T., Conzelmann K. K. 1994; Infectious rabies viruses from cloned cDNA. EMBO J 13:4195–4203
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82452-0
Loading
/content/journal/jgv/10.1099/vir.0.82452-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed