Aptamers in the virologists' toolkit Free

Abstract

Aptamers are artificial nucleic acid ligands that can be generated against a wide range of molecules, including the gene products of viruses. Aptamers are isolated from complex libraries of synthetic nucleic acids by an iterative, cell-free process that involves repetitively reducing the complexity of the library by partitioning on the basis of selective binding to the target molecule, followed by reamplification. For virologists, aptamers have potential uses as tools to help to analyse the molecular biology of virus replication, as a complement to the more familiar monoclonal antibodies. They also have potential applications as diagnostic biosensors and in the development of antiviral agents. In recent years, these two promising avenues have been explored increasingly by virologists; here, the progress that has been made is reviewed.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82442-0
2007-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/2/351.html?itemId=/content/journal/jgv/10.1099/vir.0.82442-0&mimeType=html&fmt=ahah

References

  1. Adamis A. P., Altaweel M., Bressler N. M., Cunningham E. T. Jr, Davis M. D., Goldbaum M., Gonzales C., Guyer D. R., Barrett K., Patel M. 2006; Changes in retinal neovascularization after pegaptanib (Macugen) therapy in diabetic individuals. Macugen Diabetic Retinopathy Study Group. Ophthalmology 113:23–28 [CrossRef]
    [Google Scholar]
  2. Aldaz-Carroll L., Tallet B., Dausse E., Yurchenko L., Toulme J. J. 2002; Apical loop-internal loop interactions: a new RNA-RNA recognition motif identified through in vitro selection against RNA hairpins of the hepatitis C virus mRNA. Biochemistry 41:5883–5893 [CrossRef]
    [Google Scholar]
  3. Andreola M. L., Pileur F., Calmels C., Ventura M., Tarrago-Litvak L., Toulme J. J., Litvak S. 2001; DNA aptamers selected against the HIV-1 RNase H display in vitro antiviral activity. Biochemistry 40:10087–10094 [CrossRef]
    [Google Scholar]
  4. Aurup H., Williams D. M., Eckstein F. 1992; 2′-Fluoro- and 2′-amino-2′-deoxynucleoside 5′-triphosphates as substrates for T7 RNA polymerase. Biochemistry 31:9636–9641 [CrossRef]
    [Google Scholar]
  5. Avery R. L., Pieramici D. J., Rabena M. D., Castellarin A. A., Nasir M. A., Giust M. J. 2006; Intravitreal bevacizumab (Avastin) for neovascular age-related macular degeneration. Ophthalmology 113:363–372 [CrossRef]
    [Google Scholar]
  6. Bachler M., Schroeder R., von Ahsen U. 1999; StreptoTag: a novel method for the isolation of RNA-binding proteins. RNA 5:1509–1516 [CrossRef]
    [Google Scholar]
  7. Bai J., Banda N., Lee N. S., Rossi J., Akkina R. 2002; RNA-based anti-HIV-1 gene therapeutic constructs in SCID-hu mouse model. Mol Ther 6:770–782 [CrossRef]
    [Google Scholar]
  8. Banerjea A., Li M. J., Remling L., Rossi J., Akkina R. 2004; Lentiviral transduction of Tar Decoy and CCR5 ribozyme into CD34+ progenitor cells and derivation of HIV-1 resistant T cells and macrophages. AIDS Res Ther 1:2 [CrossRef]
    [Google Scholar]
  9. Bartel D. P., Zapp M. L., Green M. R., Szostak J. W. 1991; HIV-1 Rev regulation involves recognition of non-Watson-Crick base pairs in viral RNA. Cell 67:529–536 [CrossRef]
    [Google Scholar]
  10. Baskerville S., Zapp M., Ellington A. D. 1995; High-resolution mapping of the human T-cell leukemia virus type 1 Rex-binding element by in vitro selection. J Virol 69:7559–7569
    [Google Scholar]
  11. Baskerville S., Zapp M., Ellington A. D. 1999; Anti-Rex aptamers as mimics of the Rex-binding element. J Virol 73:4962–4971
    [Google Scholar]
  12. Beaurain F., Di Primo C., Toulme J. J., Laguerre M. 2003; Molecular dynamics reveals the stabilizing role of loop closing residues in kissing interactions: comparison between TAR-TAR* and TAR-aptamer. Nucleic Acids Res 31:4275–4284 [CrossRef]
    [Google Scholar]
  13. Bellecave P., Andreola M. L., Ventura M., Tarrago-Litvak L., Litvak S., Astier-Gin T. 2003; Selection of DNA aptamers that bind the RNA-dependent RNA polymerase of hepatitis C virus and inhibit viral RNA synthesis in vitro. Oligonucleotides 13:455–463 [CrossRef]
    [Google Scholar]
  14. Berglund J. A., Charpentier B., Rosbash M. 1997; A high affinity binding site for the HIV-1 nucleocapsid protein. Nucleic Acids Res 25:1042–1049 [CrossRef]
    [Google Scholar]
  15. Biroccio A., Hamm J., Incitti I., De Francesco R., Tomei L. 2002; Selection of RNA aptamers that are specific and high-affinity ligands of the hepatitis C virus RNA-dependent RNA polymerase. J Virol 76:3688–3696 [CrossRef]
    [Google Scholar]
  16. Boiziau C., Dausse E., Yurchenko L., Toulme J. J. 1999; DNA aptamers selected against the HIV-1 trans-activation-responsive RNA element form RNA-DNA kissing complexes. J Biol Chem 274:12730–12737 [CrossRef]
    [Google Scholar]
  17. Bunka D. H., Stockley P. G. 2006; Aptamers come of age – at last. Nat Rev Microbiol 4:588–596 [CrossRef]
    [Google Scholar]
  18. Burke D. H., Scates L., Andrews K., Gold L. 1996; Bent pseudoknots and novel RNA inhibitors of type 1 human immunodeficiency virus (HIV-1) reverse transcriptase. J Mol Biol 264:650–666 [CrossRef]
    [Google Scholar]
  19. Chakravarthy U., Adamis A. P., Cunningham E. T. Jr, Goldbaum M., Guyer D. R., Katz B., Patel M. 2006a; Year 2 efficacy results of 2 randomized controlled clinical trials of pegaptanib for neovascular age-related macular degeneration. VEGF Inhibition Study in Ocular Neovascularization (V.I.S.I.O.N.) Clinical Trial Group. Ophthalmology 113:1508
    [Google Scholar]
  20. Chakravarthy U., Soubrane G., Bandello F., Chong V., Creuzot-Garcher C., Dimitrakos S. A. II, Korobelnik J. F., Larsen M., Mones J. other authors 2006b; Evolving European guidance on the medical management of neovascular age related macular degeneration. Br J Ophthalmol 90:1188–1196 [CrossRef]
    [Google Scholar]
  21. Chaloin L., Lehmann M. J., Sczakiel G., Restle T. 2002; Endogenous expression of a high-affinity pseudoknot RNA aptamer suppresses replication of HIV-1. Nucleic Acids Res 30:4001–4008 [CrossRef]
    [Google Scholar]
  22. Chen H., Gold L. 1994; Selection of high-affinity RNA ligands to reverse transcriptase: inhibition of cDNA synthesis and RNase H activity. Biochemistry 33:8746–8756 [CrossRef]
    [Google Scholar]
  23. Chen H., McBroom D. G., Zhu Y. Q., Gold L., North T. W. 1996; Inhibitory RNA ligand to reverse transcriptase from feline immunodeficiency virus. Biochemistry 35:6923–6930 [CrossRef]
    [Google Scholar]
  24. Chen Y., Wiesmann C., Fuh G., Li B., Christinger H. W., McKay P., de Vos A. M., Lowman H. B. 1999; Selection and analysis of an optimized anti-VEGF antibody: crystal structure of an affinity-matured Fab in complex with antigen. J Mol Biol 293:865–881 [CrossRef]
    [Google Scholar]
  25. Cho S., Lee S. H., Chung W. J., Kim Y. K., Lee Y. S., Kim B. G. 2004; Microbead-based affinity chromatography chip using RNA aptamer modified with photocleavable linker. Electrophoresis 25:3730–3739 [CrossRef]
    [Google Scholar]
  26. Cho S., Kim J. E., Lee B. R., Kim J. H., Kim B. G. 2005; Bis-aptazyme sensors for hepatitis C virus replicase and helicase without blank signal. Nucleic Acids Res 33:e177 [CrossRef]
    [Google Scholar]
  27. Clever J. L., Taplitz R. A., Lochrie M. A., Polisky B., Parslow T. G. 2000; A heterologous, high-affinity RNA ligand for human immunodeficiency virus Gag protein has RNA packaging activity. J Virol 74:541–546 [CrossRef]
    [Google Scholar]
  28. Collin D., van Heijenoort C., Boiziau C., Toulme J. J., Guittet E. 2000; NMR characterization of a kissing complex formed between the TAR RNA element of HIV-1 and a DNA aptamer. Nucleic Acids Res 28:3386–3391 [CrossRef]
    [Google Scholar]
  29. Convery M. A., Rowsell S., Stonehouse N. J., Ellington A. D., Hirao I., Murray J. B., Peabody D. S., Phillips S. E., Stockley P. G. 1998; Crystal structure of an RNA aptamer-protein complex at 2.8 A resolution. Nat Struct Biol 5:133–139 [CrossRef]
    [Google Scholar]
  30. Cunningham E. T. Jr, Adamis A. P., Altaweel M., Aiello L. P., Bressler N. M., D'Amico D. J., Goldbaum M., Guyer D. R., Katz B. other authors 2005; A phase II randomized double-masked trial of pegaptanib, an anti-vascular endothelial growth factor aptamer, for diabetic macular edema. Ophthalmology 112:1747–1757 [CrossRef]
    [Google Scholar]
  31. D'Amico D. J., Patel M., Adamis A. P., Cunningham E. T. Jr, Guyer D. R., Katz B. 2006; Pegaptanib sodium for neovascular age-related macular degeneration: two-year safety results of the two prospective, multicenter, controlled clinical trials. VEGF Inhibition Study in Ocular Neovascularization (V.I.S.I.O.N.) Clinical Trial Group. Ophthalmology 113:1001
    [Google Scholar]
  32. Dangerfield J. A., Windbichler N., Salmons B., Gunzburg W. H., Schroder R. 2006; Enhancement of the StreptoTag method for isolation of endogenously expressed proteins with complex RNA binding targets. Electrophoresis 27:1874–1877 [CrossRef]
    [Google Scholar]
  33. Darfeuille F., Hansen J. B., Orum H., Di Primo C., Toulme J. J. 2004; LNA/DNA chimeric oligomers mimic RNA aptamers targeted to the TAR RNA element of HIV-1. Nucleic Acids Res 32:3101–3107 [CrossRef]
    [Google Scholar]
  34. Da Rocha Gomes S., Dausse E., Toulme J. J. 2004; Determinants of apical loop-internal loop RNA-RNA interactions involving the HCV IRES. Biochem Biophys Res Commun 322:820–826 [CrossRef]
    [Google Scholar]
  35. DeStefano J. J., Cristofaro J. V. 2006; Selection of primer-template sequences that bind human immunodeficiency virus reverse transcriptase with high affinity. Nucleic Acids Res 34:130–139 [CrossRef]
    [Google Scholar]
  36. Dey A. K., Griffiths C., Lea S. M., James W. 2005a; Structural characterization of an anti-gp120 RNA aptamer that neutralizes R5 strains of HIV-1. RNA 11:873–884 [CrossRef]
    [Google Scholar]
  37. Dey A. K., Khati M., Tang M., Wyatt R., Lea S. M., James W. 2005b; An aptamer that neutralizes R5 strains of human immunodeficiency virus type 1 blocks gp120–CCR5 interaction. J Virol 79:13806–13810 [CrossRef]
    [Google Scholar]
  38. Duconge F., Toulme J. J. 1999; In vitro selection identifies key determinants for loop-loop interactions: RNA aptamers selective for the TAR RNA element of HIV-1. RNA 5:1605–1614 [CrossRef]
    [Google Scholar]
  39. Ellington A. D., Szostak J. W. 1990; In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822 [CrossRef]
    [Google Scholar]
  40. Fisher T. S., Joshi P., Prasad V. R. 2005; HIV-1 reverse transcriptase mutations that confer decreased in vitro susceptibility to anti-RT DNA aptamer RT1t49 confer cross resistance to other anti-RT aptamers but not to standard RT inhibitors. AIDS Res Ther 2:8 [CrossRef]
    [Google Scholar]
  41. Fitzwater T., Polisky B. 1996; A SELEX primer. Methods Enzymol 267:275–301
    [Google Scholar]
  42. Fu H., Guthrie J. W., Le X. C. 2006; Study of binding stoichiometries of the human immunodeficiency virus type 1 reverse transcriptase by capillary electrophoresis and laser-induced fluorescence polarization using aptamers as probes. Electrophoresis 27:433–441 [CrossRef]
    [Google Scholar]
  43. Fukuda K., Vishinuvardhan D., Sekiya S., Kakiuchi N., Shimotohno K., Kumar P. K., Nishikawa S. 1997; Specific RNA aptamers to NS3 protease domain of hepatitis C virus. Nucleic Acids Symp Ser 37:237–238
    [Google Scholar]
  44. Fukuda K., Vishnuvardhan D., Sekiya S., Hwang J., Kakiuchi N., Taira K., Shimotohno K., Kumar P. K., Nishikawa S. 2000; Isolation and characterization of RNA aptamers specific for the hepatitis C virus nonstructural protein 3 protease. Eur J Biochem 267:3685–3694 [CrossRef]
    [Google Scholar]
  45. Fukuda K., Umehara T., Sekiya S., Kunio K., Hasegawa T., Nishikawa S. 2004; An RNA ligand inhibits hepatitis C virus NS3 protease and helicase activities. Biochem Biophys Res Commun 325:670–675 [CrossRef]
    [Google Scholar]
  46. Giver L., Bartel D., Zapp M., Pawul A., Green M., Ellington A. D. 1993; Selective optimization of the Rev-binding element of HIV-1. Nucleic Acids Res 21:5509–5516 [CrossRef]
    [Google Scholar]
  47. Good P. D., Krikos A. J., Li S. X., Bertrand E., Lee N. S., Giver L., Ellington A., Zaia J. A., Rossi J. J., Engelke D. R. 1997; Expression of small, therapeutic RNAs in human cell nuclei. Gene Ther 4:45–54 [CrossRef]
    [Google Scholar]
  48. Gopinath S. C., Sakamaki Y., Kawasaki K., Kumar P. K. 2006a; An efficient RNA aptamer against human influenza B virus hemagglutinin. J Biochem (Tokyo) 139:837–846 [CrossRef]
    [Google Scholar]
  49. Gopinath S. C. B., Misono T. S., Kawasaki K., Mizuno T., Imai M., Odagiri T., Kumar P. K. R. 2006b; An RNA aptamer that distinguishes between closely related human influenza viruses and inhibits haemagglutinin-mediated membrane fusion. J Gen Virol 87:479–487 [CrossRef]
    [Google Scholar]
  50. Gragoudas E. S., Adamis A. P., Cunningham E. T. Jr, Feinsod M., Guyer D. R. 2004; Pegaptanib for neovascular age-related macular degeneration. VEGF Inhibition Study in Ocular Neovascularization Clinical Trial Group. N Engl J Med 351:2805–2816 [CrossRef]
    [Google Scholar]
  51. Green L. S., Jellinek D., Bell C., Beebe L. A., Feistner B. D., Gill S. C., Jucker F. M., Janjic N. 1995; Nuclease-resistant nucleic acid ligands to vascular permeability factor/vascular endothelial growth factor. Chem Biol 2:683–695 [CrossRef]
    [Google Scholar]
  52. Guo S., Tschammer N., Mohammed S., Guo P. 2005; Specific delivery of therapeutic RNAs to cancer cells via the dimerization mechanism of phi29 motor pRNA. Hum Gene Ther 16:1097–1109 [CrossRef]
    [Google Scholar]
  53. Hannoush R. N., Carriero S., Min K. L., Damha M. J. 2004; Selective inhibition of HIV-1 reverse transcriptase (HIV-1 RT) RNase H by small RNA hairpins and dumbbells. ChemBioChem 5:527–533 [CrossRef]
    [Google Scholar]
  54. Hansen J. A., Wang J., Kawde A. N., Xiang Y., Gothelf K. V., Collins G. 2006; Quantum-dot/aptamer-based ultrasensitive multi-analyte electrochemical biosensor. J Am Chem Soc 128:2228–2229 [CrossRef]
    [Google Scholar]
  55. Heier J. S., Antoszyk A. N., Pavan P. R., Leff S. R., Rosenfeld P. J., Ciulla T. A., Dreyer R. F., Gentile R. C., Sy J. P. other authors 2006; Ranibizumab for treatment of neovascular age-related macular degeneration: a phase I/II multicenter, controlled, multidose study. Ophthalmology 113:642
    [Google Scholar]
  56. Held D. M., Kissel J. D., Saran D., Michalowski D., Burke D. H. 2006; Differential susceptibility of HIV-1 reverse transcriptase to inhibition by RNA aptamers in enzymatic reactions monitoring specific steps during genome replication. J Biol Chem 281:25712–25722 [CrossRef]
    [Google Scholar]
  57. Horn W. T., Convery M. A., Stonehouse N. J., Adams C. J., Liljas L., Phillips S. E., Stockley P. G. 2004; The crystal structure of a high affinity RNA stem-loop complexed with the bacteriophage MS2 capsid: further challenges in the modeling of ligand-RNA interactions. RNA 10:1776–1782 [CrossRef]
    [Google Scholar]
  58. Hwang J., Fauzi H., Fukuda K., Sekiya S., Kakiuchi N., Shimotohno K., Taira K., Kusakabe I., Nishikawa S. 2000; The RNA aptamer-binding site of hepatitis C virus NS3 protease. Biochem Biophys Res Commun 279:557–562 [CrossRef]
    [Google Scholar]
  59. James W. 2000; Aptamers. In Encyclopedia of Analytical Chemistry: Applications. Theory and Instrumentation pp  4848–4871 Edited by Meyers R. A. Chichester, UK: Wiley;
    [Google Scholar]
  60. James W. 2001; Nucleic acid and polypeptide aptamers: a powerful approach to ligand discovery. Curr Opin Pharmacol 1:540–546 [CrossRef]
    [Google Scholar]
  61. Jellinek D., Green L. S., Bell C., Janjic N. 1994; Inhibition of receptor binding by high-affinity RNA ligands to vascular endothelial growth factor. Biochemistry 33:10450–10456 [CrossRef]
    [Google Scholar]
  62. Jensen K. B., Green L., MacDougal-Waugh S., Tuerk C. 1994; Characterization of an in vitro-selected RNA ligand to the HIV-1 Rev protein. J Mol Biol 235:237–247 [CrossRef]
    [Google Scholar]
  63. Jeon S. H., Kayhan B., Ben-Yedidia T., Arnon R. 2004; A DNA aptamer prevents influenza infection by blocking the receptor binding region of the viral hemagglutinin. J Biol Chem 279:48410–48419 [CrossRef]
    [Google Scholar]
  64. Jiang F., Gorin A., Hu W., Majumdar A., Baskerville S., Xu W., Ellington A., Patel D. J. 1999; Anchoring an extended HTLV-1 Rex peptide within an RNA major groove containing junctional base triples. Structure 7:1461–1472 [CrossRef]
    [Google Scholar]
  65. Jing N., Hogan M. E. 1998; Structure-activity of tetrad-forming oligonucleotides as a potent anti-HIV therapeutic drug. J Biol Chem 273:34992–34999 [CrossRef]
    [Google Scholar]
  66. Jing N., Rando R. F., Pommier Y., Hogan M. E. 1997; Ion selective folding of loop domains in a potent anti-HIV oligonucleotide. Biochemistry 36:12498–12505 [CrossRef]
    [Google Scholar]
  67. Joshi P., Prasad V. R. 2002; Potent inhibition of human immunodeficiency virus type 1 replication by template analog reverse transcriptase inhibitors derived by SELEX (systematic evolution of ligands by exponential enrichment). J Virol 76:6545–6557 [CrossRef]
    [Google Scholar]
  68. Joshi P. J., North T. W., Prasad V. R. 2005; Aptamers directed to HIV-1 reverse transcriptase display greater efficacy over small hairpin RNAs targeted to viral RNA in blocking HIV-1 replication. Mol Ther 11:677–686 [CrossRef]
    [Google Scholar]
  69. Khati M., Schuman M., Ibrahim J., Sattentau Q., Gordon S., James W. 2003; Neutralization of infectivity of diverse R5 clinical isolates of human immunodeficiency virus type 1 by gp120-binding 2'F-RNA aptamers. J Virol 77:12692–12698 [CrossRef]
    [Google Scholar]
  70. Kikuchi K., Umehara T., Fukuda K., Hwang J., Kuno A., Hasegawa T., Nishikawa S. 2003; RNA aptamers targeted to domain II of hepatitis C virus IRES that bind to its apical loop region. J Biochem (Tokyo) 133:263–270 [CrossRef]
    [Google Scholar]
  71. Kikuchi K., Umehara T., Fukuda K., Kuno A., Hasegawa T., Nishikawa S. 2005; A hepatitis C virus (HCV) internal ribosome entry site (IRES) domain III–IV-targeted aptamer inhibits translation by binding to an apical loop of domain IIId. Nucleic Acids Res 33:683–692 [CrossRef]
    [Google Scholar]
  72. Kim M. Y., Jeong S. 2003; RNA aptamers that bind the nucleocapsid protein contain pseudoknots. Mol Cells 16:413–417
    [Google Scholar]
  73. Kim M. Y., Jeong S. 2004; Inhibition of the functions of the nucleocapsid protein of human immunodeficiency virus-1 by an RNA aptamer. Biochem Biophys Res Commun 320:1181–1186 [CrossRef]
    [Google Scholar]
  74. Kim S. J., Kim M. Y., Lee J. H., You J. C., Jeong S. 2002; Selection and stabilization of the RNA aptamers against the human immunodeficiency virus type-1 nucleocapsid protein. Biochem Biophys Res Commun 291:925–931 [CrossRef]
    [Google Scholar]
  75. Kolb G., Reigadas S., Boiziau C., van Aerschot A., Arzumanov A., Gait M. J., Herdewijn P., Toulme J. J. 2005; Hexitol nucleic acid-containing aptamers are efficient ligands of HIV-1 TAR RNA. Biochemistry 44:2926–2933 [CrossRef]
    [Google Scholar]
  76. Kumar P. K., Machida K., Urvil P. T., Kakiuchi N., Vishnuvardhan D., Shimotohno K., Taira K., Nishikawa S. 1997; Isolation of RNA aptamers specific to the NS3 protein of hepatitis C virus from a pool of completely random RNA. Virology 237:270–282 [CrossRef]
    [Google Scholar]
  77. Lee J.-H., Canny M. D., De Erkenez A., Krilleke D., Ng Y.-S., Shima D. T., Pardi A., Jucker F. 2005; A therapeutic aptamer inhibits angiogenesis by specifically targeting the heparin binding domain of VEGF165. Proc Natl Acad Sci U S A 102:18902–18907 [CrossRef]
    [Google Scholar]
  78. Liss M., Petersen B., Wolf H., Prohaska E. 2002; An aptamer-based quartz crystal protein biosensor. Anal Chem 74:4488–4495 [CrossRef]
    [Google Scholar]
  79. Lochrie M. A., Waugh S., Pratt D. G., Clever J. Jr, Parslow T. G., Polisky B. 1997; In vitro selection of RNAs that bind to the human immunodeficiency virus type-1 gag polyprotein. Nucleic Acids Res 25:2902–2910 [CrossRef]
    [Google Scholar]
  80. Marozzi A., Meneveri R., Giacca M., Gutierrez M. I., Siccardi A. G., Ginelli E. 1998; In vitro selection of HIV-1 TAR variants by the Tat protein. J Biotechnol 61:117–128 [CrossRef]
    [Google Scholar]
  81. Matsugami A., Kobayashi S., Ouhashi K., Uesugi S., Yamamoto R., Taira K., Nishikawa S., Kumar P. K., Katahira M. 2003; Structural basis of the highly efficient trapping of the HIV Tat protein by an RNA aptamer. Structure 11:533–545 [CrossRef]
    [Google Scholar]
  82. Misono T. S., Kumar P. K. 2005; Selection of RNA aptamers against human influenza virus hemagglutinin using surface plasmon resonance. Anal Biochem 342:312–317 [CrossRef]
    [Google Scholar]
  83. Muller Y. A., Chen Y., Christinger H. W., Li B., Cunningham B. C., Lowman H. B., de Vos A. M. 1998; VEGF and the Fab fragment of a humanized neutralizing antibody: crystal structure of the complex at 2.4 A resolution and mutational analysis of the interface. Structure 6:1153–1167 [CrossRef]
    [Google Scholar]
  84. Nickens D. G., Patterson J. T., Burke D. H. 2003; Inhibition of HIV-1 reverse transcriptase by RNA aptamers in Escherichia coli. RNA 9:1029–1033 [CrossRef]
    [Google Scholar]
  85. Nishikawa F., Kakiuchi N., Funaji K., Fukuda K., Sekiya S., Nishikawa S. 2003; Inhibition of HCV NS3 protease by RNA aptamers in cells. Nucleic Acids Res 31:1935–1943 [CrossRef]
    [Google Scholar]
  86. Nishikawa F., Funaji K., Fukuda K., Nishikawa S. 2004; In vitro selection of RNA aptamers against the HCV NS3 helicase domain. Oligonucleotides 14:114–129 [CrossRef]
    [Google Scholar]
  87. Parrott A. M., Lago H., Adams C. J., Ashcroft A. E., Stonehouse N. J., Stockley P. G. 2000; RNA aptamers for the MS2 bacteriophage coat protein and the wild-type RNA operator have similar solution behaviour. Nucleic Acids Res 28:489–497 [CrossRef]
    [Google Scholar]
  88. Pavski V., Le X. C. 2001; Detection of human immunodeficiency virus type 1 reverse transcriptase using aptamers as probes in affinity capillary electrophoresis. Anal Chem 73:6070–6076 [CrossRef]
    [Google Scholar]
  89. Pestourie C., Tavitian B., Duconge F. 2005; Aptamers against extracellular targets for in vivo applications. Biochimie 87:921–930 [CrossRef]
    [Google Scholar]
  90. Piguet V., Sattentau Q. 2004; Dangerous liaisons at the virological synapse. J Clin Invest 114:605–610 [CrossRef]
    [Google Scholar]
  91. Puglisi J. D., Chen L., Blanchard S., Frankel A. D. 1995; Solution structure of a bovine immunodeficiency virus Tat-TAR peptide-RNA complex. Science 270:1200–1203 [CrossRef]
    [Google Scholar]
  92. Rhodes A., James W. 1990; Inhibition of human immunodeficiency virus replication in cell culture by endogenously synthesized antisense RNA. J Gen Virol 71:1965–1974 [CrossRef]
    [Google Scholar]
  93. Rittner K., Burmester C., Sczakiel G. 1993; In vitro selection of fast-hybridizing and effective antisense RNAs directed against the human immunodeficiency virus type 1. Nucleic Acids Res 21:1381–1387 [CrossRef]
    [Google Scholar]
  94. Romero-Lopez C., Barroso-delJesus A., Puerta-Fernandez E., Berzal-Herranz A. 2005; Interfering with hepatitis C virus IRES activity using RNA molecules identified by a novel in vitro selection method. Biol Chem 386:183–190
    [Google Scholar]
  95. Rosenfeld P. J., Rich R. M., Lalwani G. A. 2006a; Ranibizumab: phase III clinical trial results. Ophthalmol Clin North Am 19:361–372
    [Google Scholar]
  96. Rosenfeld P. J., Heier J. S., Hantsbarger G., Shams N. 2006b; Tolerability and efficacy of multiple escalating doses of ranibizumab (Lucentis) for neovascular age-related macular degeneration. Ophthalmology 113:632–e1
    [Google Scholar]
  97. Rowsell S., Stonehouse N. J., Convery M. A., Adams C. J., Ellington A. D., Hirao I., Peabody D. S., Stockley P. G., Phillips S. E. 1998; Crystal structures of a series of RNA aptamers complexed to the same protein target. Nat Struct Biol 5:970–975 [CrossRef]
    [Google Scholar]
  98. Ruckman J., Green L. S., Beeson J., Waugh S., Gillette W. L., Henninger D. D., Claesson-Welsh L., Janjic N. 1998; 2′-Fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165). Inhibition of receptor binding and VEGF-induced vascular permeability through interactions requiring the exon 7-encoded domain. J Biol Chem 273:20556–20567 [CrossRef]
    [Google Scholar]
  99. Sayer N., Ibrahim J., Turner K., Tahiri-Alaoui A., James W. 2002; Structural characterization of a 2′F-RNA aptamer that binds a HIV-1 SU glycoprotein, gp120. Biochem Biophys Res Commun 293:924–931 [CrossRef]
    [Google Scholar]
  100. Schneider D., Tuerk C., Gold L. 1992; Selection of high affinity RNA ligands to the bacteriophage R17 coat protein. J Mol Biol 228:862–869 [CrossRef]
    [Google Scholar]
  101. Schneider D. J., Feigon J., Hostomsky Z., Gold L. 1995; High-affinity ssDNA inhibitors of the reverse transcriptase of type 1 human immunodeficiency virus. Biochemistry 34:9599–9610 [CrossRef]
    [Google Scholar]
  102. Sekiya S., Nishikawa F., Fukuda K., Nishikawa S. 2003; Structure/function analysis of an RNA aptamer for hepatitis C virus NS3 protease. J Biochem (Tokyo) 133:351–359 [CrossRef]
    [Google Scholar]
  103. Southern E. M., Case-Green S. C., Elder J. K., Johnson M., Mir K. U., Wang L., Williams J. C. 1994; Arrays of complementary oligonucleotides for analysing the hybridisation behaviour of nucleic acids. Nucleic Acids Res 22:1368–1373 [CrossRef]
    [Google Scholar]
  104. Srisawat C., Engelke D. R. 2001; Streptavidin aptamers: affinity tags for the study of RNAs and ribonucleoproteins. RNA 7:632–641 [CrossRef]
    [Google Scholar]
  105. Sullenger B. A., Gallardo H. F., Ungers G. E., Gilboa E. 1990; Overexpression of TAR sequences renders cells resistant to human immunodeficiency virus replication. Cell 63:601–608 [CrossRef]
    [Google Scholar]
  106. Tahiri-Alaoui A., Frigotto L., Manville N., Ibrahim J., Romby P., James W. 2002; High affinity nucleic acid aptamers for streptavidin incorporated into bi-specific capture ligands. Nucleic Acids Res 30:e45 [CrossRef]
    [Google Scholar]
  107. Tian Y., Adya N., Wagner S., Giam C. Z., Green M. R., Ellington A. D. 1995; Dissecting protein : protein interactions between transcription factors with an RNA aptamer. RNA 1:317–326
    [Google Scholar]
  108. Tombelli S., Minunni M., Luzi E., Mascini M. 2005; Aptamer-based biosensors for the detection of HIV-1 Tat protein. Bioelectrochemistry 67:135–141 [CrossRef]
    [Google Scholar]
  109. Tuerk C., Gold L. 1990; Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510 [CrossRef]
    [Google Scholar]
  110. Tuerk C., MacDougal-Waugh S. 1993; In vitro evolution of functional nucleic acids: high-affinity RNA ligands of HIV-1 proteins. Gene 137:33–39 [CrossRef]
    [Google Scholar]
  111. Tuerk C., MacDougal S., Gold L. 1992; RNA pseudoknots that inhibit human immunodeficiency virus type 1 reverse transcriptase. Proc Natl Acad Sci U S A 89:6988–6992 [CrossRef]
    [Google Scholar]
  112. Umehara T., Fukuda K., Nishikawa F., Kohara M., Hasegawa T., Nishikawa S. 2005; Rational design of dual-functional aptamers that inhibit the protease and helicase activities of HCV NS3. J Biochem (Tokyo) 137:339–347 [CrossRef]
    [Google Scholar]
  113. Urvil P. T., Kakiuchi N., Zhou D. M., Shimotohno K., Kumar P. K., Nishikawa S. 1997; Selection of RNA aptamers that bind specifically to the NS3 protease of hepatitis C virus. Eur J Biochem 248:130–138 [CrossRef]
    [Google Scholar]
  114. van den Worm S. H., Stonehouse N. J., Valegard K., Murray J. B., Walton C., Fridborg K., Stockley P. G., Liljas L. 1998; Crystal structures of MS2 coat protein mutants in complex with wild-type RNA operator fragments. Nucleic Acids Res 26:1345–1351 [CrossRef]
    [Google Scholar]
  115. Vo N. V., Oh J. W., Lai M. M. 2003; Identification of RNA ligands that bind hepatitis C virus polymerase selectively and inhibit its RNA synthesis from the natural viral RNA templates. Virology 307:301–316 [CrossRef]
    [Google Scholar]
  116. Wilkinson T. A., Zhu L., Hu W., Chen Y. 2004; Retention of conformational flexibility in HIV-1 Rev-RNA complexes. Biochemistry 43:16153–16160 [CrossRef]
    [Google Scholar]
  117. Wilson C., Nix J., Szostak J. 1998; Functional requirements for specific ligand recognition by a biotin-binding RNA pseudoknot. Biochemistry 37:14410–14419 [CrossRef]
    [Google Scholar]
  118. Yamamoto R., Katahira M., Nishikawa S., Baba T., Taira K., Kumar P. K. 2000; A novel RNA motif that binds efficiently and specifically to the Ttat protein of HIV and inhibits the trans-activation by Tat of transcription in vitro and in vivo. Genes Cells 5:371–388 [CrossRef]
    [Google Scholar]
  119. Ye X., Gorin A., Ellington A. D., Patel D. J. 1996; Deep penetration of an alpha-helix into a widened RNA major groove in the HIV-1 rev peptide-RNA aptamer complex. Nat Struct Biol 3:1026–1033 [CrossRef]
    [Google Scholar]
  120. Ye X., Gorin A., Frederick R., Hu W., Majumdar A., Xu W., McLendon G., Ellington A., Patel D. J. 1999; RNA architecture dictates the conformations of a bound peptide. Chem Biol 6:657–669 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82442-0
Loading
/content/journal/jgv/10.1099/vir.0.82442-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed