1887

Abstract

Pathogenesis of the highly pathogenic avian influenza virus A/Hong Kong/483/97 (H5N1/97) remains to be investigated. It was demonstrated recently that H5N1 dysregulation of proinflammatory cytokines in human macrophages is a p38-kinase-dependent process. The results indicated that macrophages may play a role in disease severity. To investigate cellular responses to H5N1 infection further, apoptosis and its related pathways were studied in primary blood macrophages. Here, it is shown that the H5N1/97 virus triggered apoptosis, including caspases and PARP activation, in infected macrophages with a delayed onset compared with H1N1 counterparts. Similar results were also found in human macrophages infected by precursors of the H5N1/97 virus. Thus, these results showed that the delay in apoptosis onset in macrophages infected by H5N1/97 and its related precursor subtypes may be a means for the pathogens to have longer survival in the cells; this may contribute to the pathogenesis of H5N1 disease in humans.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82423-0
2007-04-01
2020-01-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/4/1275.html?itemId=/content/journal/jgv/10.1099/vir.0.82423-0&mimeType=html&fmt=ahah

References

  1. Brydon, E. W., Morris, S. J. & Sweet, C. ( 2005; ). Role of apoptosis and cytokines in influenza virus morbidity. FEMS Microbiol Rev 29, 837–850.[CrossRef]
    [Google Scholar]
  2. Cheung, C. Y., Poon, L. L., Lau, A. S., Luk, W., Lau, Y. L., Shortridge, K. F., Gordon, S., Guan, Y. & Peiris, J. S. ( 2002; ). Induction of proinflammatory cytokines in human macrophages by influenza A (H5N1) viruses: a mechanism for the unusual severity of human disease?. Lancet 360, 1831–1837.[CrossRef]
    [Google Scholar]
  3. Claas, E. C., Osterhaus, A. D., Van Beek, R., De Jong, J. C., Rimmelzwaan, G. F., Senne, D. A., Krauss, S., Shortridge, K. F. & Webster, R. G. ( 1998; ). Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. Lancet 351, 472–477.[CrossRef]
    [Google Scholar]
  4. Cooper, L. A. & Subbarao, K. ( 2000; ). A simple restriction fragment length polymorphism-based strategy that can distinguish the internal genes of human H1N1, H3N2, and H5N1 influenza A viruses. J Clin Microbiol 38, 2579–2583.
    [Google Scholar]
  5. Fesq, H., Bacher, M., Nain, M. & Gemsa, D. ( 1994; ). Programmed cell death (apoptosis) in human monocytes infected by influenza A virus. Immunobiology 190, 175–182.[CrossRef]
    [Google Scholar]
  6. Fisman, D. N. ( 2000; ). Hemophagocytic syndromes and infection. Emerg Infect Dis 6, 601–608.[CrossRef]
    [Google Scholar]
  7. Guan, Y., Shortridge, K. F., Krauss, S. & Webster, R. G. ( 1999; ). Molecular characterization of H9N2 influenza viruses: were they the donors of the ‘internal’ genes of H5N1 viruses in Hong Kong?. Proc Natl Acad Sci U S A 96, 9363–9367.[CrossRef]
    [Google Scholar]
  8. Headley, A. S., Tolley, E. & Meduri, G. U. ( 1997; ). Infections and the inflammatory response in acute respiratory distress syndrome. Chest 111, 1306–1321.[CrossRef]
    [Google Scholar]
  9. Hinshaw, V. S., Olsen, C. W., Dybdahl-Sissoko, N. & Evans, D. ( 1994; ). Apoptosis: a mechanism of cell killing by influenza A and B viruses. J Virol 68, 3667–3673.
    [Google Scholar]
  10. Hoffmann, E., Stech, J., Leneva, I., Krauss, S., Scholtissek, C., Chin, P. S., Peiris, M., Shortridge, K. F. & Webster, R. G. ( 2000; ). Characterization of the influenza A virus gene pool in avian species in southern China: was H6N1 a derivative or a precursor of H5N1?. J Virol 74, 6309–6315.[CrossRef]
    [Google Scholar]
  11. Hong, S. J., Dawson, T. M. & Dawson, V. L. ( 2004; ). Nuclear and mitochondrial conversations in cell death: PARP-1 and AIF signaling. Trends Pharmacol Sci 25, 259–264.[CrossRef]
    [Google Scholar]
  12. Lee, D. C., Cheung, C. Y., Law, A. H., Mok, C. K., Peiris, M. & Lau, A. S. ( 2005; ). p38 mitogen-activated protein kinase-dependent hyperinduction of tumor necrosis factor alpha expression in response to avian influenza virus H5N1. J Virol 79, 10147–10154.[CrossRef]
    [Google Scholar]
  13. Price, G. E., Smith, H. & Sweet, C. ( 1997; ). Differential induction of cytotoxicity and apoptosis by influenza virus strains of differing virulence. J Gen Virol 78, 2821–2829.
    [Google Scholar]
  14. Soldani, C. & Scovassi, A. I. ( 2002; ). Poly (ADP-ribose) polymerase-1 cleavage during apoptosis: an update. Apoptosis 7, 321–328.[CrossRef]
    [Google Scholar]
  15. Subbarao, K. & Shaw, M. W. ( 2000; ). Molecular aspects of avian influenza (H5N1) viruses isolated from humans. Rev Med Virol 10, 337–348.[CrossRef]
    [Google Scholar]
  16. Subbarao, K., Klimov, A., Katz, J., Regnery, H., Lim, W., Hall, H., Perdue, M., Swayne, D., Bender, C. & other authors ( 1998; ). Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness. Science 279, 393–396.[CrossRef]
    [Google Scholar]
  17. Tadlock, L., Yamagiwa, Y., Marienfeld, C. & Patel, T. ( 2003; ). Double-stranded RNA activates a p38 MAPK-dependent cell survival program in biliary epithelia. Am J Physiol Gastrointest Liver Physiol 284, G924–G932.[CrossRef]
    [Google Scholar]
  18. Takizawa, T., Matsukawa, S., Higuchi, Y., Nakamura, S., Nakanishi, Y. & Fukuda, R. ( 1993; ). Induction of programmed cell death (apoptosis) by influenza virus infection in tissue culture cells. J Gen Virol 74, 2347–2355.[CrossRef]
    [Google Scholar]
  19. Takizawa, T., Tatematsu, C., Ohashi, K. & Nakanishi, Y. ( 1999; ). Recruitment of apoptotic cysteine proteases (caspases) in influenza virus-induced cell death. Microbiol Immunol 43, 245–252.[CrossRef]
    [Google Scholar]
  20. To, K. F., Chan, P. K., Chan, K. F., Lee, W. K., Lam, W. Y., Wong, K. F., Tang, N. L., Tsang, D. N., Sung, R. Y. & other authors ( 2001; ). Pathology of fatal human infection associated with avian influenza A H5N1 virus. J Med Virol 63, 242–246.[CrossRef]
    [Google Scholar]
  21. Tyner, J. W., Uchida, O., Kajiwara, N., Kim, E. Y., Patel, A. C., O'Sullivan, M. P., Walter, M. J., Schwendener, R. A., Cook, D. N. & other authors ( 2005; ). CCL5–CCR5 interaction provides antiapoptotic signals for macrophage survival during viral infection. Nat Med 11, 1180–1187.[CrossRef]
    [Google Scholar]
  22. Xu, X., Subbarao, K., Cox, N. J. & Guo, Y. ( 1999; ). Genetic characterization of the pathogenic influenza A/Goose/Guangdong/1/96 (H5N1) virus: similarity of its hemagglutinin gene to those of H5N1 viruses from the 1997 outbreaks in Hong Kong. Virology 261, 15–19.[CrossRef]
    [Google Scholar]
  23. Yuen, K. Y., Chan, P. K., Peiris, M., Tsang, D. N., Que, T. L., Shortridge, K. F., Cheung, P. T., To, W. K., Ho, E. T. & other authors ( 1998; ). Clinical features and rapid viral diagnosis of human disease associated with avian influenza A H5N1 virus. Lancet 351, 467–471.[CrossRef]
    [Google Scholar]
  24. Zhou, J., Law, H. K., Cheung, C. Y., Ng, I. H., Peiris, J. S. & Lau, Y. L. ( 2006; ). Functional tumor necrosis factor-related apoptosis-inducing ligand production by avian influenza virus-infected macrophages. J Infect Dis 193, 945–953.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82423-0
Loading
/content/journal/jgv/10.1099/vir.0.82423-0
Loading

Data & Media loading...

Supplements

vol. , part 4, pp. 1275 – 1280

Replication of H9N2/G1 virus in primary human blood macrophages.

Viral gene transcription in H5N1 or H1N1 virus-infected primary human blood macrophages.

p38 MAPK does not affect the level of apoptosis in H5N1-infected human macrophages.

[ Single PDF file] (170 KB)



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error