1887

Abstract

Genome structure and sequence are notably conserved between members of the family . However, some genomic regions of these viruses, such as that encoding the P1 protein, show strikingly high variability. In this study, some partially conserved motifs were identified upstream of the quite well-conserved protease domain located near the P1 C terminus. The irregular distribution of these motifs suggests that the potyviral P1 proteins have undergone complex evolutionary diversification. Evidence was found of recombination events in the P1 N-terminal region, similar to those reported in potyviruses of the bean common mosaic virus subgroup, but also affecting other potyviruses. Moreover, intergeneric recombination events affecting potyviruses and ipomoviruses were also observed. Evidence that these recombination events could be linked to host adaptation is provided. Specific sequence features and differences in net charge help to classify the P1 proteins of members of the family into two groups: those from potyviruses and rymoviruses and those from tritimoviruses. The ipomovirus has two P1 copies arranged in tandem, the most N-terminal one being of the potyvirus type and the other being of the tritimovirus type. These findings suggest that both recombination and gene duplication have contributed to P1 evolution and helped to facilitate successful adaptation of members of the family to a wide range of host species.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82402-0
2007-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/3/1016.html?itemId=/content/journal/jgv/10.1099/vir.0.82402-0&mimeType=html&fmt=ahah

References

  1. Adams M. J., Antoniw J. F., Beaudoin F. 2005; a Overview and analysis of the polyprotein cleavage sites in the family Potyviridae . Mol Plant Pathol 6:471–487 [CrossRef]
    [Google Scholar]
  2. Adams M. J., Antoniw J. F., Fauquet C. M. 2005; b Molecular criteria for genus and species discrimination within the family Potyviridae . Arch Virol 150:459–479 [CrossRef]
    [Google Scholar]
  3. Ali A., Natsuaki T., Okuda S. 2006; The complete nucleotide sequence of a Pakistani isolate of Watermelon mosaic virus provides further insights into the taxonomic status in the Bean common mosaic virus subgroup. Virus Genes 32:307–311 [CrossRef]
    [Google Scholar]
  4. Bateson M. F., Lines R. E., Revill P., Chaleeprom W., Ha C. V., Gibbs A. J., Dale J. L. 2002; On the evolution and molecular epidemiology of the potyvirus Papaya ringspot virus. J Gen Virol 83:2575–2585
    [Google Scholar]
  5. Berger P. H., Barnett O. W., Brunt A. A., Colinet D., Edwardson J. R., Hammond J., Hill J. H., Jordan R. L., Kashiwazaki S. other authors 2000; Family Potyviridae . In Virus Taxonomy: Seventh Report of the International Committee on Taxonomy of Viruses pp 703–724 Edited by van Regenmortel M. H. V., Fauquet C. M., Bishop D. H. L., Carstens E. B., Estes M. K., Lemon S. M., Maniloff J., Mayo M. A., McGeoch D. J., Pringle C. R., Wickner R. B. San Diego, CA: Academic Press;
    [Google Scholar]
  6. Bousalem M., Douzery E. J., Fargette D. 2000; High genetic diversity, distant phylogenetic relationships and intraspecies recombination events among natural populations of Yam mosaic virus: a contribution to understanding potyvirus evolution. J Gen Virol 81:243–255
    [Google Scholar]
  7. Cervera M. T., Riechmann J. L., Martin M. T., García J. A. 1993; 3′-Terminal sequence of the plum pox virus PS and o6 isolates: evidence for RNA recombination within the potyvirus group. J Gen Virol 74:329–334 [CrossRef]
    [Google Scholar]
  8. Chare E. R., Holmes E. C. 2006; A phylogenetic survey of recombination frequency in plant RNA viruses. Arch Virol 151:933–946 [CrossRef]
    [Google Scholar]
  9. Chen J., Zheng H. Y., Lin L., Adams M. J., Antoniw J. F., Zhao M. F., Shang Y. F., Chen J. P. 2004; A virus related to Soybean mosaic virus from Pinellia ternata in China and its comparison with local soybean SMV isolates. Arch Virol 149:349–363 [CrossRef]
    [Google Scholar]
  10. Desbiez C., Lecoq H. 2004; The nucleotide sequence of Watermelon mosaic virus (WMV, Potyvirus) reveals interspecific recombination between two related potyviruses in the 5′ part of the genome. Arch Virol 149:1619–1632
    [Google Scholar]
  11. García-Arenal F., Fraile A., Malpica J. M. 2003; Variation and evolution of plant virus populations. Int Microbiol 6:225–232 [CrossRef]
    [Google Scholar]
  12. Glais L., Tribodet M., Kerlan C. 2002; Genomic variability in Potato potyvirus Y (PVY): evidence that PVYNW and PVYNTN variants are single to multiple recombinants between PVYO and PVYN isolates. Arch Virol 147:363–378 [CrossRef]
    [Google Scholar]
  13. Glasa M., Palkovics L., Komínek P., Labonne G., Pittnerova S., Kudela O., Candresse T., Subr Z. 2004; Geographically and temporally distant natural recombinant isolates of plum pox virus (PPV) are genetically very similar and form a unique PPV subgroup. J Gen Virol 85:2671–2681 [CrossRef]
    [Google Scholar]
  14. Janssen D., Martin G., Velasco L., Gomez P., Segundo E., Ruiz L., Cuadrado I. M. 2005; Absence of a coding region for the helper component-proteinase in the genome of cucumber vein yellowing virus, a whitefly-transmitted member of the Potyviridae. Arch Virol 150:1439–1447 [CrossRef]
    [Google Scholar]
  15. Kasschau K. D., Carrington J. C. 1998; A counterdefensive strategy of plant viruses: suppression of posttranscriptional gene silencing. Cell 95:461–470 [CrossRef]
    [Google Scholar]
  16. Kosakovsky Pond S. L., Posada D., Gravenor M. B., Woelk C. H., Frost S. D. 2006; Automated phylogenetic detection of recombination using a genetic algorithm. Mol Biol Evol 23:1891–1901 [CrossRef]
    [Google Scholar]
  17. Krause-Sakate R., Fakhfakh H., Peypelut M., Pavan M. A., Zerbini F. M., Marrakchi M., Candresse T., Le Gall O. 2004; A naturally occurring recombinant isolate of Lettuce mosaic virus. Arch Virol 149:191–197
    [Google Scholar]
  18. Larsen R. C., Miklas P. N., Druffel K. L., Wyatt S. D. 2005; NL-3 K strain is a stable and naturally occurring interspecific recombinant derived from Bean common mosaic necrosis virus and Bean common mosaic virus . Phytopathology 95:1037–1042 [CrossRef]
    [Google Scholar]
  19. Lesemann D.-E., Winter S. 2002; Konjac mosaic virus, dasheen mosaic virus and unknown potyviruses infecting Zantedeschia spp. and other cultivated Araceae . Acta Hortic 568:135–141
    [Google Scholar]
  20. López-Moya J. J., García J. A. 1999; Potyviruses ( Potyviridae ). In Encyclopedia of Virology . , 2nd edn. pp 1369–1375 Edited by Granoff A., Webster R. G. London: Academic Press;
  21. Lovisolo O., Hull R., Rosler O. 2003; Coevolution of viruses with hosts and vectors and possible paleontology. Adv Virus Res 62:325–379
    [Google Scholar]
  22. Moreno I. M., Malpica J. M., Díaz-Pendón J. A., Moriones E., Fraile A., García-Arenal F. 2004; Variability and genetic structure of the population of watermelon mosaic virus infecting melon in Spain. Virology 318:451–460 [CrossRef]
    [Google Scholar]
  23. Mukasa S. B., Rubaihayo P. R., Valkonen J. P. T. 2006; Interactions between a crinivirus, an ipomovirus and a potyvirus in coinfected sweetpotato plants. Plant Pathol 55:458–467 [CrossRef]
    [Google Scholar]
  24. Nishiguchi M., Yamasaki S., Lu X., Shimoyama A., Hanada K., Sonoda S., Shimono M., Sakai J., Mikoshiba Y., Fujisawa I. 2006; Konjak mosaic virus: the complete nucleotide sequence of the genomic RNA and its comparison with other potyviruses. Arch Virol 151:1643–1650 [CrossRef]
    [Google Scholar]
  25. Petrzik K., Franova J. 2006; Complete genome sequence of Daphne mosaic virus - a potyvirus from an ornamental shrub related to papaya leaf distortion mosaic virus. Arch Virol 151:1461–1465 [CrossRef]
    [Google Scholar]
  26. Posada D. 2002; Evaluation of methods for detecting recombination from DNA sequences: empirical data. Mol Biol Evol 19:708–717 [CrossRef]
    [Google Scholar]
  27. Posada D., Crandall K. A. 2002; The effect of recombination on the accuracy of phylogeny estimation. J Mol Evol 54:396–402 [CrossRef]
    [Google Scholar]
  28. Pruss G., Ge X., Shi X. M., Carrington J. C., Vance V. B. 1997; Plant viral synergism: the potyviral genome encodes a broad-range pathogenicity enhancer that transactivates replication of heterologous viruses. Plant Cell 9:859–868 [CrossRef]
    [Google Scholar]
  29. Rajamäki M. L., Kelloniemi J., Alminaite A., Kekarainen T., Rabenstein F., Valkonen J. P. 2005; A novel insertion site inside the potyvirus P1 cistron allows expression of heterologous proteins and suggests some P1 functions. Virology 342:88–101 [CrossRef]
    [Google Scholar]
  30. Roossinck M. J. 2003; Plant RNA virus evolution. Curr Opin Microbiol 6:406–409 [CrossRef]
    [Google Scholar]
  31. Schubert J., Fauquet C., Merits A., Rabenstein F. 1999; The complete nucleotide sequence of the Ryegrass mosaic potyvirus indicates that it is a recombinant between members of two different genera in the family Potyviridae . J Plant Dis Prot 106:392–404
    [Google Scholar]
  32. Shukla D. D., Frenkel M. J., McKern N. M., Ward C. W., Jilka J., Tosic M., Ford R. E. 1992; Present status of the sugarcane mosaic subgroup of potyviruses. Arch Virol Suppl 5:363–373
    [Google Scholar]
  33. Spetz C., Taboada A. M., Darwich S., Ramsell J., Salazar L. F., Valkonen J. P. T. 2003; Molecular resolution of a complex of potyviruses infecting solanaceous crops at the centre of origin in Peru. J Gen Virol 84:2565–2578 [CrossRef]
    [Google Scholar]
  34. Stenger D. C., French R., Gildow F. E. 2005; Complete deletion of Wheat streak mosaic virus HC-Pro: a null mutant is viable for systemic infection. J Virol 79:12077–12080 [CrossRef]
    [Google Scholar]
  35. Tan Z., Wada Y., Chen J., Ohshima K. 2004; Inter- and intralineage recombinants are common in natural populations of Turnip mosaic virus . J Gen Virol 85:2683–2696 [CrossRef]
    [Google Scholar]
  36. Valli A., Martín-Hernández A. M., López-Moya J. J., García J. A. 2006; RNA silencing suppression by a second copy of the P1 serine protease of Cucumber vein yellowing ipomovirus (CVYV), a member of the family Potyviridae that lacks the cysteine protease HCPro. J Virol 80:10055–10063 [CrossRef]
    [Google Scholar]
  37. Verchot J., Carrington J. C. 1995; Evidence that the potyvirus P1 proteinase functions in trans as an accessory factor for genome amplification. J Virol 69:3668–3674
    [Google Scholar]
  38. Verchot J., Koonin E. V., Carrington J. C. 1991; The 35-kDa protein from the N-terminus of a potyviral polyprotein functions as a third virus-encoded proteinase. Virology 185:527–535 [CrossRef]
    [Google Scholar]
  39. Ward C. W., Shukla D. D. 1991; Taxonomy of potyviruses: current problems and some solutions. Intervirology 32:269–296
    [Google Scholar]
  40. Zhong Y., Guo A., Li C., Zhuang B., Lai M., Wei C., Luo J., Li Y. 2005; Identification of a naturally occurring recombinant isolate of Sugarcane mosaic virus causing maize dwarf mosaic disease. Virus Genes 30:75–83 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82402-0
Loading
/content/journal/jgv/10.1099/vir.0.82402-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error