The ribonucleotide reductase domain of the R1 subunit of herpes simplex virus type 2 ribonucleotide reductase is essential for R1 antiapoptotic function Free

Abstract

The R1 subunit (ICP10) of herpes simplex virus type 2 (HSV-2) ribonucleotide reductase (RR), which in addition to its C-terminal reductase domain possesses a unique N-terminal domain of about 400 aa, protects cells against apoptosis. As the NH domain on its own is not antiapoptotic, it has been postulated that both domains of R1 or part(s) of them could be necessary for this function. Here, N- and C-terminal deletions were introduced in HSV-2 R1 to map the domain(s) involved in its antiapoptotic potential. The results showed that, whereas most of the NH domain including part of the recently described putative -crystallin domain is dispensable for antiapoptotic activity, it is the integrity of the structured RR domain that is required for protection. As the -crystallin domain appears to play an important role in protein folding and oligomerization, the N-terminal boundary of the antiapoptotic domain could not be defined precisely. In addition, this study provided evidence that overexpression of HSV-2 R2 at levels up to 30-fold more than HSV-2 R1 did not decrease protection from tumour necrosis factor alpha, indicating that the R1 surface where R2 binds is not involved in antiapoptotic activity. Importantly, this result suggests that the co-expression of both RR subunits during the lytic cycle should not affect protection from this cytokine.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82383-0
2007-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/2/384.html?itemId=/content/journal/jgv/10.1099/vir.0.82383-0&mimeType=html&fmt=ahah

References

  1. Baumler C., Duan F., Onel K., Rapaport B., Jhanwar S., Offit K., Elkon K. B. 2003; Differential recruitment of caspase 8 to cFlip confers sensitivity or resistance to Fas-mediated apoptosis in a subset of familial lymphoma patients. Leuk Res 27:841–851 [CrossRef]
    [Google Scholar]
  2. Bonneau A. M., Kibler P., White P., Bousquet C., Dansereau N., Cordingley M. G. 1996; Resistance of herpes simplex virus type 1 to peptidomimetic ribonucleotide reductase inhibitors: selection and characterization of mutant isolates. J Virol 70:787–793
    [Google Scholar]
  3. Brune W., Menard C., Heesemann J., Koszinowski U. H. 2001; A ribonucleotide reductase homolog of cytomegalovirus and endothelial cell tropism. Science 291:303–305 [CrossRef]
    [Google Scholar]
  4. Caron A. W., Massie B., Mosser D. D. 2000; Use of a micromanipulator for high-efficiency cloning of cells co-expressing fluorescent proteins. Methods Cell Sci 22:137–145 [CrossRef]
    [Google Scholar]
  5. Chabaud S., Lambert H., Sasseville A. M., Lavoie H., Guilbault C., Massie B., Landry J., Langelier Y. 2003; The R1 subunit of herpes simplex virus ribonucleotide reductase has chaperone-like activity similar to Hsp27. FEBS Lett 545:213–218 [CrossRef]
    [Google Scholar]
  6. Clements J. B., Watson R. J., Wilkie N. M. 1977; Temporal regulation of herpes simplex virus type 1 transcription: location of transcripts on the viral genome. Cell 12:275–285 [CrossRef]
    [Google Scholar]
  7. Cohen E. A., Gaudreau P., Brazeau P., Langelier Y. 1986a; Neutralization of herpes simplex virus ribonucleotide reductase activity by an oligopeptide-induced antiserum directed against subunit H2. J Virol 60:1130–1133
    [Google Scholar]
  8. Cohen E. A., Gaudreau P., Brazeau P., Langelier Y. 1986b; Specific inhibition of herpesvirus ribonucleotide reductase by a nonapeptide derived from the carboxy terminus of subunit 2. Nature 321:441–443 [CrossRef]
    [Google Scholar]
  9. Conner J. 1999; The unique N terminus of herpes simplex virus type 1 ribonucleotide reductase large subunit is phosphorylated by casein kinase 2, which may have a homologue in Escherichia coli . J Gen Virol 80:1471–1476
    [Google Scholar]
  10. Conner J., Macfarlane J., Lankinen H., Marsden H. 1992; The unique N terminus of the herpes simplex virus type 1 large subunit is not required for ribonucleotide reductase activity. J Gen Virol 73:103–112 [CrossRef]
    [Google Scholar]
  11. Conner J., Marsden H., Clements J. B. 1994; Ribonucleotide reductase of herpesviruses. Rev Med Virol 4:25–34 [CrossRef]
    [Google Scholar]
  12. Durocher Y., Perret S., Kamen A. 2002; High-level and high-throughput recombinant protein production by transient transfection of suspension-growing human 293-EBNA1 cells. Nucleic Acids Res 30:E9 [CrossRef]
    [Google Scholar]
  13. Eklund H., Uhlin U., Farnegardh M., Logan D. T., Nordlund P. 2001; Structure and function of the radical enzyme ribonucleotide reductase. Prog Biophys Mol Biol 77:177–268 [CrossRef]
    [Google Scholar]
  14. Elahi S. M., Oualikene W., Naghdi L., O'Connor-McCourt M., Massie B. 2002; Adenovirus-based libraries: efficient generation of recombinant adenoviruses by positive selection with the adenovirus protease. Gene Ther 9:1238–1246 [CrossRef]
    [Google Scholar]
  15. Garcia-Ranea J. A., Mirey G., Camonis J., Valencia A. 2002; p23 and HSP20/ α -crystallin proteins define a conserved sequence domain present in other eukaryotic protein families. FEBS Lett 529:162–167 [CrossRef]
    [Google Scholar]
  16. Gupta S. 2002; A decision between life and death during TNF- α -induced signaling. J Clin Immunol 22:185–194 [CrossRef]
    [Google Scholar]
  17. Holler N., Tardivel A., Kovacsovics-Bankowski M., Hertig S., Gaide O., Martinon F., Tinel A., Deperthes D., Calderara S. other authors 2003; Two adjacent trimeric Fas ligands are required for Fas signaling and formation of a death-inducing signaling complex. Mol Cell Biol 23:1428–1440 [CrossRef]
    [Google Scholar]
  18. Ingemarson R., Lankinen H. 1987; The herpes simplex virus type 1 ribonucleotide reductase is a tight complex of the type α 2 β 2 composed of 40K and 140K proteins, of which the latter shows multiple forms due to proteolysis. Virology 156:417–422 [CrossRef]
    [Google Scholar]
  19. Jacobson J. G., Leib D. A., Goldstein D. J., Bogard C. L., Schaffer P. A., Weller S. K., Coen D. M. 1989; A herpes simplex virus ribonucleotide reductase deletion mutant is defective for productive acute and reactivatable latent infections of mice and for replication in mouse cells. Virology 173:276–283 [CrossRef]
    [Google Scholar]
  20. Lamarche N., Massie B., Richer M., Paradis H., Langelier Y. 1990; High level expression in 293 cells of the herpes simplex virus type 2 ribonucleotide reductase subunit 2 using an adenovirus vector. J Gen Virol 71:1785–1792 [CrossRef]
    [Google Scholar]
  21. Lamarche N., Gaudreau P., Massie B., Langelier Y. 1994; Affinity of synthetic peptides for the HSV-2 ribonucleotide reductase R1 subunit measured with an iodinated photoaffinity peptide. Anal Biochem 220:315–320 [CrossRef]
    [Google Scholar]
  22. Lamarche N., Matton G., Massie B., Fontecave M., Atta M., Dumas F., Gaudreau P., Langelier Y. 1996; Production of the R2 subunit of ribonucleotide reductase from herpes simplex virus with prokaryotic and eukaryotic expression systems: higher activity of R2 produced by eukaryotic cells related to higher iron-binding capacity. Biochem J 320:129–135
    [Google Scholar]
  23. Langelier Y., Champoux L., Hamel M., Guilbault C., Lamarche N., Gaudreau P., Massie B. 1998; The R1 subunit of herpes simplex virus ribonucleotide reductase is a good substrate for host cell protein kinases but is not itself a protein kinase. J Biol Chem 273:1435–1443 [CrossRef]
    [Google Scholar]
  24. Langelier Y., Bergeron S., Chabaud S., Lippens J., Guilbault C., Sasseville A. M.-J., Denis S., Mosser D. D., Massie B. 2002; The R1 subunit of herpes simplex virus ribonucleotide reductase protects cells against apoptosis at, or upstream of, caspase-8 activation. J Gen Virol 83:2779–2789
    [Google Scholar]
  25. Lembo D., Donalisio M., Hofer A., Cornaglia M., Brune W., Koszinowski U., Thelander L., Landolfo S. 2004; The ribonucleotide reductase R1 homolog of murine cytomegalovirus is not a functional enzyme subunit but is required for pathogenesis. J Virol 78:4278–4288 [CrossRef]
    [Google Scholar]
  26. Liuzzi M., Deziel R., Moss N., Beaulieu P., Bonneau A. M., Bousquet C., Chafouleas J. G., Garneau M., Jaramillo J. other authors 1994; A potent peptidomimetic inhibitor of HSV ribonucleotide reductase with antiviral activity in vivo. Nature 372:695–698 [CrossRef]
    [Google Scholar]
  27. MacRae T. H. 2000; Structure and function of small heat shock/ α -crystallin proteins: established concepts and emerging ideas. Cell Mol Life Sci 57:899–913 [CrossRef]
    [Google Scholar]
  28. Massie B., Couture F., Lamoureux L., Mosser D. D., Guilbault C., Jolicoeur P., Bélanger F., Langelier Y. 1998; Inducible overexpression of a toxic protein by an adenovirus vector with a tetracycline-regulatable expression cassette. J Virol 72:2289–2296
    [Google Scholar]
  29. Moss N., Beaulieu P., Duceppe J. S., Ferland J. M., Garneau M., Gauthier J., Ghiro E., Goulet S., Guse I. other authors 1996; Peptidomimetic inhibitors of herpes simplex virus ribonucleotide reductase with improved in vivo antiviral activity. J Med Chem 39:4173–4180 [CrossRef]
    [Google Scholar]
  30. Mullick A., Xu Y., Warren R., Koutroumanis M., Guilbault C., Brousseau S., Malenfant F., Bourget L., Lamoureux L. other authors 2006; The Cumate gene-switch: a system for regulated expression in mammalian cells. BMC Biotechnol 6:43 [CrossRef]
    [Google Scholar]
  31. Nikas I., McLauchlan J., Davison A. J., Taylor W. R., Clements J. B. 1986; Structural features of ribonucleotide reductase. Proteins 1:376–384 [CrossRef]
    [Google Scholar]
  32. Patrone M., Percivalle E., Secchi M., Fiorina L., Pedrali-Noy G., Zoppé M., Baldanti F., Hahn G., Koszinowski U. H. other authors 2003; The human cytomegalovirus UL45 gene product is a late, virion-associated protein and influences virus growth at low multiplicities of infection. J Gen Virol 84:3359–3370 [CrossRef]
    [Google Scholar]
  33. Perelygina L., Zhu L., Zurkuhlen H., Mills R., Borodovsky M., Hilliard J. K. 2003; Complete sequence and comparative analysis of the genome of herpes B virus ( Cercopithecine herpesvirus 1 ) from a rhesus monkey. J Virol 77:6167–6177 [CrossRef]
    [Google Scholar]
  34. Perkins D., Pereira E. F., Gober M., Yarowsky P. J., Aurelian L. 2002a; The herpes simplex virus type 2 R1 protein kinase (ICP10 PK) blocks apoptosis in hippocampal neurons, involving activation of the MEK/MAPK survival pathway. J Virol 76:1435–1449 [CrossRef]
    [Google Scholar]
  35. Perkins D., Yu Y., Bambrick L. L., Yarowsky P. J., Aurelian L. 2002b; Expression of herpes simplex virus type 2 protein ICP10 PK rescues neurons from apoptosis due to serum deprivation or genetic defects. Exp Neurol 174:118–122 [CrossRef]
    [Google Scholar]
  36. Perkins D., Pereira E. F., Aurelian L. 2003; The herpes simplex virus type 2 R1 protein kinase (ICP10 PK) functions as a dominant regulator of apoptosis in hippocampal neurons involving activation of the ERK survival pathway and upregulation of the antiapoptotic protein Bag-1. J Virol 77:1292–1305 [CrossRef]
    [Google Scholar]
  37. Preston V. G., Davison A. J., Marsden H. S., Timbury M. C., Subak-Sharpe J. H., Wilkie N. M. 1978; Recombinants between herpes simplex virus types 1 and 2: analyses of genome structures and expression of immediate early polypeptides. J Virol 28:499–517
    [Google Scholar]
  38. Studer S., Obrist M., Lentze N., Narberhaus F. 2002; A critical motif for oligomerization and chaperone activity of bacterial α -heat shock proteins. Eur J Biochem 269:3578–3586 [CrossRef]
    [Google Scholar]
  39. Sun Y., Conner J. 1999; The U28 ORF of human herpesvirus-7 does not encode a functional ribonucleotide reductase R1 subunit. J Gen Virol 80:2713–2718
    [Google Scholar]
  40. Tyler S. D., Severini A. 2006; The complete genome sequence of herpesvirus papio 2 ( Cercopithecine herpesvirus 16 ) shows evidence of recombination events among various progenitor herpesviruses. J Virol 80:1214–1221 [CrossRef]
    [Google Scholar]
  41. Tyler S. D., Peters G. A., Severini A. 2005; Complete genome sequence of cercopithecine herpesvirus 2 (SA8) and comparison with other simplexviruses. Virology 331:429–440 [CrossRef]
    [Google Scholar]
  42. Uhlin U., Eklund H. 1994; Structure of ribonucleotide reductase protein R1. Nature 370:533–539 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82383-0
Loading
/content/journal/jgv/10.1099/vir.0.82383-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed