1887

Abstract

Gamma interferon (IFN-) production is important in the host response to, and recovery from, infection with (ECTV) and (VACV). The orthopoxviruses have evolved several mechanisms to subvert the IFN- response. IFN--binding protein (IFN-BP) is a virally encoded homologue of the host IFN- receptor that blocks the effects of IFN- in the infected host. Unlike the cellular receptors, whose ligand specificity is restricted to their own species, the orthopoxvirus IFN-BPs bind IFN- from several species. The reason for this relaxed specificity has yet to be explained. ECTV, a mouse pathogen, encodes an IFN-BP that has been shown to inhibit the activity of both human and murine IFN- (hIFN- and mIFN-, respectively). In contrast, the IFN-BP from VACV is unable to inhibit mIFN-, but retains activity against hIFN-. To determine which region(s) in the ECTV sequence is responsible for its ability to bind to mIFN- with high affinity, a series of chimeric IFN-BPs, as well as individual point mutants in the ECTV sequence corresponding to the amino acid changes from the VACV sequence, were constructed. The affinities of the chimeric and point mutant IFN-BPs for mIFN- were tested by using surface plasmon resonance and bioassay. By using this strategy, several key residues in the ligand-binding domains of the ECTV sequence have been identified that are responsible for high-affinity binding to mIFN-. Substitution of the ECTV residue at these positions in VACV resulted in a dramatic increase in the affinity of the VACV IFN-BP for mIFN-.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82324-0
2007-01-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/1/51.html?itemId=/content/journal/jgv/10.1099/vir.0.82324-0&mimeType=html&fmt=ahah

References

  1. Alcami, A. ( 2003; ). Viral mimicry of cytokines, chemokines and their receptors. Nat Rev Immunol 3, 36–50.[CrossRef]
    [Google Scholar]
  2. Alcami, A. & Koszinowski, U. H. ( 2000; ). Viral mechanisms of immune evasion. Trends Microbiol 8, 410–418.[CrossRef]
    [Google Scholar]
  3. Alcami, A. & Smith, G. L. ( 1995; ). Vaccinia, cowpox, and camelpox viruses encode soluble gamma interferon receptors with novel broad species specificity. J Virol 69, 4633–4639.
    [Google Scholar]
  4. Alcami, A. & Smith, G. L. ( 1996; ). Soluble interferon-gamma receptors encoded by poxviruses. Comp Immunol Microbiol Infect Dis 19, 305–317.[CrossRef]
    [Google Scholar]
  5. Alcami, A., Symons, J. A., Khanna, A. & Smith, G. L. ( 1998; ). Poxviruses: capturing cytokines and chemokines. Semin Virol 8, 419–427.[CrossRef]
    [Google Scholar]
  6. Alexander, W. A., Moss, B. & Fuerst, T. R. ( 1992; ). Regulated expression of foreign genes in vaccinia virus under the control of bacteriophage T7 RNA polymerase and the Escherichia coli lac repressor. J Virol 66, 2934–2942.
    [Google Scholar]
  7. Bai, H., Buller, R. M., Chen, N., Green, M. & Nuara, A. A. ( 2005; ). Biosynthesis of the IFN-gamma binding protein of ectromelia virus, the causative agent of mousepox. Virology 334, 41–50.[CrossRef]
    [Google Scholar]
  8. Chaudhri, G., Panchanathan, V., Buller, R. M., van den Eertwegh, A. J., Claassen, E., Zhou, J., de Chazal, R., Laman, J. D. & Karupiah, G. ( 2004; ). Polarized type 1 cytokine response and cell-mediated immunity determine genetic resistance to mousepox. Proc Natl Acad Sci U S A 101, 9057–9062.[CrossRef]
    [Google Scholar]
  9. Chen, W., Drillien, R., Spehner, D. & Buller, R. M. ( 1992; ). Restricted replication of ectromelia virus in cell culture correlates with mutations in virus-encoded host range gene. Virology 187, 433–442.[CrossRef]
    [Google Scholar]
  10. Chen, N., Danila, M. I., Feng, Z., Buller, R. M., Wang, C., Han, X., Lefkowitz, E. J. & Upton, C. ( 2003; ). The genomic sequence of ectromelia virus, the causative agent of mousepox. Virology 317, 165–186.[CrossRef]
    [Google Scholar]
  11. Falkner, F. G. & Moss, B. ( 1990; ). Transient dominant selection of recombinant vaccinia viruses. J Virol 64, 3108–3111.
    [Google Scholar]
  12. Fuerst, T. R., Earl, P. L. & Moss, B. ( 1987; ). Use of a hybrid vaccinia virus-T7 RNA polymerase system for expression of target genes. Mol Cell Biol 7, 2538–2544.
    [Google Scholar]
  13. Graham, K. A., Lalani, A. S., Macen, J. L., Ness, T. L., Barry, M., Liu, L. Y., Lucas, A., Clark-Lewis, I., Moyer, R. W. & McFadden, G. ( 1997; ). The T1/35 kDa family of poxvirus-secreted proteins bind chemokines and modulate leukocyte influx into virus-infected tissues. Virology 229, 12–24.[CrossRef]
    [Google Scholar]
  14. Karupiah, G., Blanden, R. V. & Ramshaw, I. A. ( 1990; ). Interferon gamma is involved in the recovery of athymic nude mice from recombinant vaccinia virus/interleukin 2 infection. J Exp Med 172, 1495–1503.[CrossRef]
    [Google Scholar]
  15. Karupiah, G., Fredrickson, T. N., Holmes, K. L., Khairallah, L. H. & Buller, R. M. ( 1993; ). Importance of interferons in recovery from mousepox. J Virol 67, 4214–4226.
    [Google Scholar]
  16. Lalani, A. S., Graham, K., Mossman, K., Rajarathnam, K., Clark-Lewis, I., Kelvin, D. & McFadden, G. ( 1997; ). The purified myxoma virus gamma interferon receptor homolog M-T7 interacts with the heparin-binding domains of chemokines. J Virol 71, 4356–4363.
    [Google Scholar]
  17. Lefkowitz, E. J., Upton, C., Changayil, S. S., Buck, C., Traktman, P. & Buller, R. M. ( 2005; ). Poxvirus Bioinformatics Resource Center: a comprehensive Poxviridae informational and analytical resource. Nucleic Acids Res 33, D311–D316.[CrossRef]
    [Google Scholar]
  18. McFadden, G. ( 2005; ). Poxvirus tropism. Nat Rev Microbiol 3, 201–213.[CrossRef]
    [Google Scholar]
  19. McFadden, G., Graham, K., Ellison, K., Barry, M., Macen, J., Schreiber, M., Mossman, K., Nash, P., Lalani, A. & Everett, H. ( 1995; ). Interruption of cytokine networks by poxviruses: lessons from myxoma virus. J Leukoc Biol 57, 731–738.
    [Google Scholar]
  20. Mossman, K., Upton, C., Buller, R. M. & McFadden, G. ( 1995a; ). Species specificity of ectromelia virus and vaccinia virus interferon-gamma binding proteins. Virology 208, 762–769.[CrossRef]
    [Google Scholar]
  21. Mossman, K., Upton, C. & McFadden, G. ( 1995b; ). The myxoma virus-soluble interferon-gamma receptor homolog, M-T7, inhibits interferon-gamma in a species-specific manner. J Biol Chem 270, 3031–3038.[CrossRef]
    [Google Scholar]
  22. Mossman, K., Nation, P., Macen, J., Garbutt, M., Lucas, A. & McFadden, G. ( 1996; ). Myxoma virus M-T7, a secreted homolog of the interferon-gamma receptor, is a critical virulence factor for the development of myxomatosis in European rabbits. Virology 215, 17–30.[CrossRef]
    [Google Scholar]
  23. Puehler, F., Weining, K. C., Symons, J. A., Smith, G. L. & Staeheli, P. ( 1998; ). Vaccinia virus-encoded cytokine receptor binds and neutralizes chicken interferon-gamma. Virology 248, 231–240.[CrossRef]
    [Google Scholar]
  24. Seregin, S. V., Babkina, I. N., Nesterov, A. E., Siniakov, A. N., Shchelkunov, S. N. & Sandakhchiev, L. S. ( 1996; ). Smallpox virus codes a protein that suppresses the antiviral activity of human gamma-interferon. Dokl Akad Nauk 346, 122–124 (in Russian).
    [Google Scholar]
  25. Sroller, V., Ludvikova, V., Maresova, L., Hainz, P. & Nemeckova, S. ( 2001; ). Effect of IFN-gamma receptor gene deletion on vaccinia virus virulence. Arch Virol 146, 239–249.[CrossRef]
    [Google Scholar]
  26. Symons, J. A., Tscharke, D. C., Price, N. & Smith, G. L. ( 2002; ). A study of the vaccinia virus interferon-γ receptor and its contribution to virus virulence. J Gen Virol 83, 1953–1964.
    [Google Scholar]
  27. Verardi, P. H., Jones, L. A., Aziz, F. H., Ahmad, S. & Yilma, T. D. ( 2001; ). Vaccinia virus vectors with an inactivated gamma interferon receptor homolog gene (B8R) are attenuated in vivo without a concomitant reduction in immunogenicity. J Virol 75, 11–18.[CrossRef]
    [Google Scholar]
  28. Walter, M. R., Windsor, W. T., Nagabhushan, T. L., Lundell, D. J., Lunn, C. A., Zauodny, P. J. & Narula, S. K. ( 1995; ). Crystal structure of a complex between interferon-gamma and its soluble high-affinity receptor. Nature 376, 230–235.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82324-0
Loading
/content/journal/jgv/10.1099/vir.0.82324-0
Loading

Data & Media loading...

Supplements

vol. , part 1, pp. 51 – 60

Covalent dimerization of IFN-γBP constructs.

Gel-filtration analysis of IFN-γBP point mutants.

[ Single PDF file] (336 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error