1887

Abstract

Natural, aqueous extracts of , the Chilean soapbark tree, contain several physiologically active triterpenoid saponins that display strong adjuvant activity when used in either human or animal vaccines. In this paper, we describe studies that demonstrate a novel antiviral activity of extracts against six viruses: vaccinia virus, herpes simplex virus type 1, varicella zoster virus, human immunodeficiency viruses 1 and 2 (HIV-1, HIV-2) and reovirus. We demonstrate that microgram amounts of extract, while exhibiting no cell cytotoxicity or direct virucidal activity, prevent each of the six viruses tested from infecting their host cells. In addition, the presence of residual amounts of extract continue to block virus infection and render cells resistant to infection for at least 16 h after the removal of the extract from the cell culture medium. We demonstrate that a extract possesses strong antiviral activity at concentrations more than 100-fold lower than concentrations that exhibit cell cytotoxicity. Extract concentrations as high as 100 μg ml are not cytotoxic, but concentrations as low as 0.1 μg ml are able to block HIV-1 and HIV-2 virus attachment and infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82321-0
2007-01-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/1/275.html?itemId=/content/journal/jgv/10.1099/vir.0.82321-0&mimeType=html&fmt=ahah

References

  1. Amoros, M., Fauconnier, B. & Girre, R. L. ( 1987; ). In vitro antiviral activity of a saponin from Anagallis arvensis, Primulaceae, against herpes simplex virus and poliovirus. Antiviral Res 8, 13–25.[CrossRef]
    [Google Scholar]
  2. Apers, S., Baronikova, S., Sindambiwe, J. B., Witvrouw, M., De Clercq, E., Vanden Berghe, D., Van Marck, E., Vlietinck, A. & Pieters, L. ( 2001; ). Antiviral, haemolytic and molluscicidal activities of triterpenoid saponins from Maesa lanceolata: establishment of structure-activity relationships. Planta Med 67, 528–532.[CrossRef]
    [Google Scholar]
  3. Balazs, I. & Caldarella, J. ( 1981; ). Retrovirus gene expression during the cell cycle. I. Virus production, synthesis, and expression of viral proteins in Rauscher murine leukemia virus-infected mouse cells. J Virol 39, 792–799.
    [Google Scholar]
  4. Bjorkerud, S. & Bondjers, G. ( 1972; ). Endothelial integrity and viability in the aorta of the normal rabbit and rat as evaluated with dye exclusion tests and interference contrast microscopy. Atherosclerosis 15, 285–300.[CrossRef]
    [Google Scholar]
  5. Brunetti, C. R., Burke, R. L., Kornfeld, S., Gregory, W., Masiarz, F. R., Dingwell, K. S. & Johnson, D. C. ( 1994; ). Herpes simplex virus glycoprotein D acquires mannose 6-phosphate residues and binds to mannose 6-phosphate receptors. J Biol Chem 269, 17067–17074.
    [Google Scholar]
  6. Burkhart, C. G. ( 2005; ). Herpes acquisition and transmission. J Drugs Dermatol 4, 378–383.
    [Google Scholar]
  7. Chang, P. L., Ameen, M., Lafferty, K. I., Varey, P. A., Davidson, A. R. & Davidson, R. G. ( 1985; ). Action of surface-active agents on arylsulfatase-C of human cultured fibroblasts. Anal Biochem 144, 362–370.[CrossRef]
    [Google Scholar]
  8. Choi, J., Huh, K., Kim, S. H., Lee, K. T., Lee, H. K. & Park, H. J. ( 2002; ). Kalopanaxsaponin A from Kalopanax pictus, a potent antioxidant in the rheumatoidal rat treated with Freund's complete adjuvant reagent. J Ethnopharmacol 79, 113–118.[CrossRef]
    [Google Scholar]
  9. Cole, N. L. & Grose, C. ( 2003; ). Membrane fusion mediated by herpesvirus glycoproteins: the paradigm of varicella-zoster virus. Rev Med Virol 13, 207–222.[CrossRef]
    [Google Scholar]
  10. Dalgleish, A. G., Beverley, P. C., Clapham, P. R., Crawford, D. H., Greaves, M. F. & Weiss, R. A. ( 1984; ). The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature 312, 763–767.[CrossRef]
    [Google Scholar]
  11. Dalsgaard, K. ( 1974; ). Saponin adjuvants. 3. Isolation of a substance from Quillaja saponaria Molina with adjuvant activity in food-and-mouth disease vaccines. Arch Gesamte Virusforsch 44, 243–254.[CrossRef]
    [Google Scholar]
  12. Deng, H., Liu, R., Ellmeier, W., Choe, S., Unutmaz, D., Burkhart, M., Di Marzio, P., Marmon, S., Sutton, R. E. & other authors ( 1996; ). Identification of a major co-receptor for primary isolates of HIV-1. Nature 381, 661–666.[CrossRef]
    [Google Scholar]
  13. Deng, H. K., Unutmaz, D., KewalRamani, V. N. & Littman, D. R. ( 1997; ). Expression cloning of new receptors used by simian and human immunodeficiency viruses. Nature 388, 296–300.[CrossRef]
    [Google Scholar]
  14. Doranz, B. J., Rucker, J., Yi, Y., Smyth, R. J., Samson, M., Peiper, S. C., Parmentier, M., Collman, R. G. & Doms, R. W. ( 1996; ). A dual-tropic primary HIV-1 isolate that uses fusin and the beta-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell 85, 1149–1158.[CrossRef]
    [Google Scholar]
  15. Dragic, T., Litwin, V., Allaway, G. P., Martin, S. R., Huang, Y., Nagashima, K. A., Cayanan, C., Maddon, P. J., Koup, R. A. & other authors ( 1996; ). HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 381, 667–673.[CrossRef]
    [Google Scholar]
  16. Feng, Y., Broder, C. C., Kennedy, P. E. & Berger, E. A. ( 1996; ). HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272, 872–877.[CrossRef]
    [Google Scholar]
  17. Gabel, C. A., Dubey, L., Steinberg, S. P., Sherman, D., Gershon, M. D. & Gershon, A. A. ( 1989; ). Varicella-zoster virus glycoprotein oligosaccharides are phosphorylated during posttranslational maturation. J Virol 63, 4264–4276.
    [Google Scholar]
  18. Gershon, A. A., Sherman, D. L., Zhu, Z., Gabel, C. A., Ambron, R. T. & Gershon, M. D. ( 1994; ). Intracellular transport of newly synthesized varicella-zoster virus: final envelopment in the trans-Golgi network. J Virol 68, 6372–6390.
    [Google Scholar]
  19. Gosse, B. K., Gnabre, J. N., Ito, Y. & Huang, R. C. ( 2002; ). Isolation of saponins with viral entry inhibitory activity by combined chromatographic methods. J Liq Chromatogr Relat Technol 25, 3199–3211.[CrossRef]
    [Google Scholar]
  20. Guo, S. & Kenne, L. ( 2000; ). Structural studies of triterpenoid saponins with new acyl components from Quillaja saponaria Molina. Phytochemistry 55, 419–428.[CrossRef]
    [Google Scholar]
  21. Jassim, S. A. & Naji, M. A. ( 2003; ). Novel antiviral agents: a medicinal plant perspective. J Appl Microbiol 95, 412–427.[CrossRef]
    [Google Scholar]
  22. Kensil, C. R. ( 1996; ). Saponins as vaccine adjuvants. Crit Rev Ther Drug Carrier Syst 13, 1–55.
    [Google Scholar]
  23. Klatzmann, D., Champagne, E., Chamaret, S., Gruest, J., Guetard, D., Hercend, T., Gluckman, J. C. & Montagnier, L. ( 1984; ). T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV. Nature 312, 767–768.[CrossRef]
    [Google Scholar]
  24. Larocca, J. N. & Ledeen, R. W. ( 1993; ). Hydrolysis of inositol trisphosphate by purified rat brain myelin. J Neurochem 60, 1864–1869.[CrossRef]
    [Google Scholar]
  25. Liao, F., Alkhatib, G., Peden, K. W., Sharma, G., Berger, E. A. & Farber, J. M. ( 1997; ). STRL33, a novel chemokine receptor-like protein, functions as a fusion cofactor for both macrophage-tropic and T cell line-tropic HIV-1. J Exp Med 185, 2015–2023.[CrossRef]
    [Google Scholar]
  26. Mackett, M., Smith, G. L. & Moss, B. ( 1982; ). Vaccinia virus: a selectable eukaryotic cloning and expression vector. Proc Natl Acad Sci U S A 79, 7415–7419.[CrossRef]
    [Google Scholar]
  27. O'Donnell, C. D., Tiwari, V., Oh, M. J. & Shukla, D. ( 2006; ). A role for heparan sulfate 3-O-sulfotransferase isoform 2 in herpes simplex virus type 1 entry and spread. Virology 346, 452–459.[CrossRef]
    [Google Scholar]
  28. Parashar, U. D., Alexander, J. P. & Glass, R. I. ( 2006; ). Prevention of rotavirus gastroenteritis among infants and children. Recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep 55, 1–13.
    [Google Scholar]
  29. Patel, D. & Pickup, D. ( 1987; ). Messenger RNAs of a strongly-expressed late gene of cowpox virus contain 5′-terminal poly(A) sequences. EMBO J 6, 3787–3794.
    [Google Scholar]
  30. Ramos-Alvarez, M. & Sabin, A. B. ( 1958; ). Enteropathogenic viruses and bacteria; role in summer diarrheal diseases of infancy and early childhood. J Am Med Assoc 167, 147–156.[CrossRef]
    [Google Scholar]
  31. Roner, M. R. & Joklik, W. K. ( 2001; ). Reovirus reverse genetics: incorporation of the CAT gene into the reovirus genome. Proc Natl Acad Sci U S A 98, 8036–8041.[CrossRef]
    [Google Scholar]
  32. Roos, J. W., Maughan, M. F., Liao, Z., Hildreth, J. E. & Clements, J. E. ( 2000; ). LuSIV cells: a reporter cell line for the detection and quantitation of a single cycle of HIV and SIV replication. Virology 273, 307–315.[CrossRef]
    [Google Scholar]
  33. Scanlan, P. M., Tiwari, V., Bommireddy, S. & Shukla, D. ( 2003; ). Cellular expression of gH confers resistance to herpes simplex virus type-1 entry. Virology 312, 14–24.[CrossRef]
    [Google Scholar]
  34. Smith, G. L. & Law, M. ( 2004; ). The exit of vaccinia virus from infected cells. Virus Res 106, 189–197.[CrossRef]
    [Google Scholar]
  35. Stefano, K. A., Collman, R., Kolson, D., Hoxie, J., Nathanson, N. & Gonzalez-Scarano, F. ( 1993; ). Replication of a macrophage-tropic strain of human immunodeficiency virus type 1 (HIV-1) in a hybrid cell line, CEMx174, suggests that cellular accessory molecules are required for HIV-1 entry. J Virol 67, 6707–6715.
    [Google Scholar]
  36. Tiwari, V., Clement, C., Duncan, M. B., Chen, J., Liu, J. & Shukla, D. ( 2004; ). A role for 3-O-sulfated heparan sulfate in cell fusion induced by herpes simplex virus type 1. J Gen Virol 85, 805–809.[CrossRef]
    [Google Scholar]
  37. Tiwari, V., Clement, C., Scanlan, P. M., Kowlessur, D., Yue, B. Y. & Shukla, D. ( 2005; ). A role for herpesvirus entry mediator as the receptor for herpes simplex virus 1 entry into primary human trabecular meshwork cells. J Virol 79, 13173–13179.[CrossRef]
    [Google Scholar]
  38. Tokuda, H., Konoshima, T., Kozuka, M. & Kimura, T. ( 1988; ). Inhibitory effects of 12-O-tetradecanoylphorbol-13-acetate and teleocidin B induced Epstein-Barr virus by saponin and its related compounds. Cancer Lett 40, 309–317.[CrossRef]
    [Google Scholar]
  39. Tyler, K. L., Clarke, P., DeBiasi, R. L., Kominsky, D. & Poggioli, G. J. ( 2001; ). Reoviruses and the host cell. Trends Microbiol 9, 560–564.[CrossRef]
    [Google Scholar]
  40. Valyi-Nagy, T., Sheth, V., Clement, C., Tiwari, V., Scanlan, P., Kavouras, J. H., Leach, L., Guzman-Hartman, G., Dermody, T. S. & Shukla, D. ( 2004; ). Herpes simplex virus entry receptor nectin-1 is widely expressed in the murine eye. Curr Eye Res 29, 303–309.[CrossRef]
    [Google Scholar]
  41. van Setten, D. C. & van de Werken, G. ( 1996; ). Molecular structures of saponins from Quillaja saponaria Molina. Adv Exp Med Biol 404, 185–193.
    [Google Scholar]
  42. van Setten, D. C., van de Werken, G., Zomer, G. & Kersten, G. F. ( 1995; ). Glycosyl compositions and structural characteristics of the potential immuno-adjuvant active saponins in the Quillaja saponaria Molina extract quil A. Rapid Commun Mass Spectrom 9, 660–666.[CrossRef]
    [Google Scholar]
  43. van Setten, D. C., ten Hove, G. J., Wiertz, E. J., Kamerling, J. P. & van de Werken, G. ( 1998; ). Multiple-stage tandem mass spectrometry for structural characterization of saponins. Anal Chem 70, 4401–4409.[CrossRef]
    [Google Scholar]
  44. Verma, V. S. & Raychaudhuri, S. P. ( 1970; ). Effect of saponin on the infectivity of potato virus X. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg 125, 113–118.
    [Google Scholar]
  45. Wu, J. Y., Gardner, B. H., Murphy, C. I., Seals, J. R., Kensil, C. R., Recchia, J., Beltz, G. A., Newman, G. W. & Newman, M. J. ( 1992; ). Saponin adjuvant enhancement of antigen-specific immune responses to an experimental HIV-1 vaccine. J Immunol 148, 1519–1525.
    [Google Scholar]
  46. Xia, G., Chen, J., Tiwari, V., Ju, W., Li, J. P., Malmstrom, A., Shukla, D. & Liu, J. ( 2002; ). Heparan sulfate 3-O-sulfotransferase isoform 5 generates both an antithrombin-binding site and an entry receptor for herpes simplex virus, type 1. J Biol Chem 277, 37912–37919.[CrossRef]
    [Google Scholar]
  47. Xu, D., Tiwari, V., Xia, G., Clement, C., Shukla, D. & Liu, J. ( 2005; ). Characterization of heparan sulphate 3-O-sulphotransferase isoform 6 and its role in assisting the entry of herpes simplex virus type 1. Biochem J 385, 451–459.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82321-0
Loading
/content/journal/jgv/10.1099/vir.0.82321-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error