1887

Abstract

Persistent viruses disseminate from immune hosts. They must therefore resist neutralization by antibody. Murine gammaherpesvirus-68 (MHV-68) represents an accessible model with which to address how resistance to neutralization is achieved and how overcoming it might improve infection control. The MHV-68 glycoprotein B (gB), like that of other herpesviruses, is a virion protein that is essential for infectivity. As such, it presents a potential neutralization target. In order to test whether virus-induced antibodies reduce virion infectivity by binding to gB, monoclonal antibodies (mAbs) were derived from MHV-68-infected mice. gB-specific mAbs were common, but only an IgM specific for the gB N terminus reduced virion infectivity significantly. It inhibited MHV-68 entry into BHK-21 cells at a post-binding step that was linked closely to membrane fusion. Reducing the mAb to IgM monomers compromised neutralization severely, suggesting that a pentameric structure was crucial to its function. Antibody treatment never blocked BHK-21 cell infection completely and blocked the infection of NMuMG epithelial cells hardly at all. Virions saturated with antibody also remained infectious to mice. Thus, the MHV-68 gB presents at best a very difficult target for antibody-mediated neutralization.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82313-0
2006-12-01
2024-12-12
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/12/3515.html?itemId=/content/journal/jgv/10.1099/vir.0.82313-0&mimeType=html&fmt=ahah

References

  1. Adler H., Messerle M., Wagner M., Koszinowski U. H. 2000; Cloning and mutagenesis of the murine gammaherpesvirus 68 genome as an infectious bacterial artificial chromosome. J Virol 74:6964–6974 [CrossRef]
    [Google Scholar]
  2. Akula S. M., Pramod N. P., Wang F.-Z., Chandran B. 2001; Human herpesvirus 8 envelope-associated glycoprotein B interacts with heparan sulfate-like moieties. Virology 284:235–249 [CrossRef]
    [Google Scholar]
  3. Akula S. M., Pramod N. P., Wang F.-Z., Chandran B. 2002; Integrin α 3 β 1 (CD 49c/29) is a cellular receptor for Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8) entry into the target cells. Cell 108:407–419 [CrossRef]
    [Google Scholar]
  4. Austin C. D., Wen X., Gazzard L., Nelson C., Scheller R. H., Scales S. J. 2005; Oxidizing potential of endosomes and lysosomes limits intracellular cleavage of disulfide-based antibody–drug conjugates. Proc Natl Acad Sci U S A 102:17987–17992 [CrossRef]
    [Google Scholar]
  5. Boname J. M., de Lima B. D., Lehner P. J., Stevenson P. G. 2004; Viral degradation of the MHC class I peptide loading complex. Immunity 20:305–317 [CrossRef]
    [Google Scholar]
  6. Boname J. M., May J. S., Stevenson P. G. 2005; Murine gammaherpesvirus 68 open reading frame 11 encodes a nonessential virion component. J Virol 79:3163–3168 [CrossRef]
    [Google Scholar]
  7. Boppana S. B., Rivera L. B., Fowler K. B., Mach M., Britt W. J. 2001; Intrauterine transmission of cytomegalovirus to infants of women with preconceptional immunity. N Engl J Med 344:1366–1371 [CrossRef]
    [Google Scholar]
  8. Coleman H. M., de Lima B., Morton V., Stevenson P. G. 2003; Murine gammaherpesvirus 68 lacking thymidine kinase shows severe attenuation of lytic cycle replication in vivo but still establishes latency. J Virol 77:2410–2417 [CrossRef]
    [Google Scholar]
  9. Cranage M. P., Kouzarides T., Bankier A. T. & 8 other authors 1986; Identification of the human cytomegalovirus glycoprotein B gene and induction of neutralizing antibodies via its expression in recombinant vaccinia virus. EMBO J 5:3057–3063
    [Google Scholar]
  10. de Lima B. D., May J. S., Stevenson P. G. 2004; Murine gammaherpesvirus 68 lacking gp150 shows defective virion release but establishes normal latency in vivo. J Virol 78:5103–5112 [CrossRef]
    [Google Scholar]
  11. Dialyna I. A., Graham D., Rezaee R., Blue C. E., Stavrianeas N. G., Neisters H. G. M., Spandidos D. A., Blackbourn D. J. 2004; Anti-HHV-8/KSHV antibodies in infected individuals inhibit infection in vitro. AIDS 18:1263–1270 [CrossRef]
    [Google Scholar]
  12. Fenner F., McAuslan B. R., Mims C. A., Sambrook J., White D. O. 1974 The Biology of Animal Viruses , 2nd edn. pp  408–418 London: Academic Press;
    [Google Scholar]
  13. Flaño E., Kim I.-J., Woodland D. L., Blackman M. A. 2002; γ -Herpesvirus latency is preferentially maintained in splenic germinal center and memory B cells. J Exp Med 196:1363–1372 [CrossRef]
    [Google Scholar]
  14. Fuki I. V., Meyer M. E., Williams K. J. 2000; Transmembrane and cytoplasmic domains of syndecan mediate a multi-step endocytic pathway involving detergent-insoluble membrane rafts. Biochem J 351:607–612 [CrossRef]
    [Google Scholar]
  15. Gangappa S., Kapadia S. B., Speck S. H., Virgin H. W. IV 2002; Antibody to a lytic cycle viral protein decreases gammaherpesvirus latency in B-cell-deficient mice. J Virol 76:11460–11468 [CrossRef]
    [Google Scholar]
  16. Gill M. B., Gillet L., Colaco S., May J. S., de Lima B. D., Stevenson P. G. 2006; Murine gammaherpesvirus-68 glycoprotein H–glycoprotein L complex is a major target for neutralizing monoclonal antibodies. J Gen Virol 87:1465–1475 [CrossRef]
    [Google Scholar]
  17. Gorman S., Harvey N. L., Moro D., Lloyd M. L., Voigt V., Smith L. M., Lawson M. A., Shellam G. R. 2006; Mixed infection with multiple strains of murine cytomegalovirus occurs following simultaneous or sequential infection of immunocompetent mice. J Gen Virol 87:1123–1132 [CrossRef]
    [Google Scholar]
  18. Janz A., Oezel M., Kurzeder C., Mautner J., Pich D., Kost M., Hammerschmidt W., Delecluse H.-J. 2000; Infectious Epstein-Barr virus lacking major glycoprotein BLLF1 (gp350/220) demonstrates the existence of additional viral ligands. J Virol 74:10142–10152 [CrossRef]
    [Google Scholar]
  19. Klein R. J. 1989; Reinfections and site-specific immunity in herpes simplex virus infections. Vaccine 7:380–381 [CrossRef]
    [Google Scholar]
  20. Kozuch O., Reichel M., Lesso J., Remenova A., Labuda M., Lysy J., Mistrikova J. 1993; Further isolation of murine herpesviruses from small mammals in southwestern Slovakia. Acta Virol 37:101–105
    [Google Scholar]
  21. Lopes F. B., Colaco S., May J. S., Stevenson P. G. 2004; Characterization of the murine gammaherpesvirus 68 glycoprotein B. J Virol 78:13370–13375 [CrossRef]
    [Google Scholar]
  22. Lopper M., Compton T. 2004; Coiled-coil domains in glycoproteins B and H are involved in human cytomegalovirus membrane fusion. J Virol 78:8333–8341 [CrossRef]
    [Google Scholar]
  23. May J. S., Colaco S., Stevenson P. G. 2005a; Glycoprotein M is an essential lytic replication protein of the murine gammaherpesvirus 68. J Virol 79:3459–3467 [CrossRef]
    [Google Scholar]
  24. May J. S., Walker J., Colaco S., Stevenson P. G. 2005b; The murine gammaherpesvirus 68 ORF27 gene product contributes to intercellular viral spread. J Virol 79:5059–5068 [CrossRef]
    [Google Scholar]
  25. May J. S., Coleman H. M., Boname J. M., Stevenson P. G. 2005c; Murine gammaherpesvirus-68 ORF28 encodes a non-essential virion glycoprotein. J Gen Virol 86:919–928 [CrossRef]
    [Google Scholar]
  26. Moorman N. J., Lin C. Y., Speck S. H. 2004; Identification of candidate gammaherpesvirus 68 genes required for virus replication by signature-tagged transposon mutagenesis. J Virol 78:10282–10290 [CrossRef]
    [Google Scholar]
  27. Naranatt P. P., Akula S. M., Chandran B. 2002; Characterization of γ 2-human herpesvirus-8 glycoproteins gH and gL. Arch Virol 147:1349–1370 [CrossRef]
    [Google Scholar]
  28. Pantophlet R., Burton D. R. 2006; GP120: target for neutralizing HIV-1 antibodies. Annu Rev Immunol 24:739–769 [CrossRef]
    [Google Scholar]
  29. Pereira L., Ali M., Kousoulas K., Huo B., Banks T. 1989; Domain structure of herpes simplex virus 1 glycoprotein B: neutralizing epitopes map in regions of continuous and discontinuous residues. Virology 172:11–24 [CrossRef]
    [Google Scholar]
  30. Pertel P. E. 2002; Human herpesvirus 8 glycoprotein B (gB), gH, and gL can mediate cell fusion. J Virol 76:4390–4400 [CrossRef]
    [Google Scholar]
  31. Sangster M. Y., Topham D. J., D'Costa S., Cardin R. D., Marion T. N., Myers L. K., Doherty P. C. 2000; Analysis of the virus-specific and nonspecific B cell response to a persistent B-lymphotropic gammaherpesvirus. J Immunol 164:1820–1828 [CrossRef]
    [Google Scholar]
  32. Sitki-Green D., Covington M., Raab-Traub N. 2003; Compartmentalization and transmission of multiple Epstein-Barr virus strains in asymptomatic carriers. J Virol 77:1840–1847 [CrossRef]
    [Google Scholar]
  33. Song M. J., Hwang S., Wong W. H., Wu T.-T., Lee S., Liao H.-I., Sun R. 2005; Identification of viral genes essential for replication of murine γ -herpesvirus 68 using signature-tagged mutagenesis. Proc Natl Acad Sci U S A 102:3805–3810 [CrossRef]
    [Google Scholar]
  34. Spiekermann G. M., Finn P. W., Ward E. S., Dumont J., Dickinson B. L., Blumberg R. S., Lencer W. I. 2002; Receptor-mediated immunoglobulin G transport across mucosal barriers in adult life: functional expression of FcRn in the mammalian lung. J Exp Med 196:303–310 [CrossRef]
    [Google Scholar]
  35. Stevenson P. G., Doherty P. C. 1998; Kinetic analysis of the specific host response to a murine gammaherpesvirus. J Virol 72:943–949
    [Google Scholar]
  36. Stevenson P. G., Doherty P. C. 1999; Non-antigen-specific B-cell activation following murine gammaherpesvirus infection is CD4 independent in vitro but CD4 dependent in vivo. J Virol 73:1075–1079
    [Google Scholar]
  37. Stevenson P. G., Efstathiou S. 2005; Immune mechanisms in murine gammaherpesvirus-68 infection. Viral Immunol 18:445–456 [CrossRef]
    [Google Scholar]
  38. Stevenson P. G., Efstathiou S., Doherty P. C., Lehner P. J. 2000; Inhibition of MHC class I-restricted antigen presentation by γ 2-herpesviruses. Proc Natl Acad Sci U S A 97:8455–8460 [CrossRef]
    [Google Scholar]
  39. Stevenson P. G., May J. S., Smith X. G., Marques S., Adler H., Koszinowski U. H., Simas J. P., Efstathiou S. 2002; K3-mediated evasion of CD8+ T cells aids amplification of a latent γ -herpesvirus. Nat Immunol 3:733–740
    [Google Scholar]
  40. Stewart J. P., Micali N., Usherwood E. J., Bonina L., Nash A. A. 1999; Murine gamma-herpesvirus 68 glycoprotein 150 protects against virus-induced mononucleosis: a model system for gamma-herpesvirus vaccination. Vaccine 17:152–157 [CrossRef]
    [Google Scholar]
  41. Sunil-Chandra N. P., Efstathiou S., Nash A. A. 1992a; Murine gammaherpesvirus 68 establishes a latent infection in mouse B lymphocytes in vivo . J Gen Virol 73:3275–3279 [CrossRef]
    [Google Scholar]
  42. Sunil-Chandra N. P., Efstathiou S., Arno J., Nash A. A. 1992b; Virological and pathological features of mice infected with murine gammaherpesvirus 68. J Gen Virol 73:2347–2356 [CrossRef]
    [Google Scholar]
  43. Takeda K., Okuno T., Isegawa Y., Yamanishi K. 1996; Identification of a variant A-specific neutralizing epitope on glycoprotein B (gB) of human herpesvirus-6 (HHV-6). Virology 222:176–183 [CrossRef]
    [Google Scholar]
  44. Thorley-Lawson D. A., Poodry C. A. 1982; Identification and isolation of the main component (gp350-gp220) of Epstein-Barr virus responsible for generating neutralizing antibodies in vivo. J Virol 43:730–736
    [Google Scholar]
  45. Turner A., Bruun B., Minson T., Browne H. 1998; Glycoproteins gB, gD, and gHgL of herpes simplex virus type 1 are necessary and sufficient to mediate membrane fusion in a Cos cell transfection system. J Virol 72:873–875
    [Google Scholar]
  46. Vey M., Schäfer W., Reis B., Ohuchi R., Britt W., Garten W., Klenk H.-D., Radsak K. 1995; Proteolytic processing of human cytomegalovirus glycoprotein B (gpUL55) is mediated by the human endoprotease furin. Virology 206:746–749 [CrossRef]
    [Google Scholar]
  47. Wang F.-Z., Akula S. M., Sharma-Walia N., Zeng L., Chandran B. 2003a; Human herpesvirus 8 envelope glycoprotein B mediates cell adhesion via its RGD sequence. J Virol 77:3131–3147 [CrossRef]
    [Google Scholar]
  48. Wang X., Huong S.-M., Chiu M. L., Raab-Traub N., Huang E.-S. 2003b; Epidermal growth factor receptor is a cellular receptor for human cytomegalovirus. Nature 424:456–461 [CrossRef]
    [Google Scholar]
  49. Xu J., Lyons P. A., Carter M. D., Booth T. W. M., Davis-Poynter N. J., Shellam G. R., Scalzo A. A. 1996; Assessment of antigenicity and genetic variation of glycoprotein B of murine cytomegalovirus. J Gen Virol 77:49–59 [CrossRef]
    [Google Scholar]
/content/journal/jgv/10.1099/vir.0.82313-0
Loading
/content/journal/jgv/10.1099/vir.0.82313-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error