1887

Abstract

Persistent viruses disseminate from immune hosts. They must therefore resist neutralization by antibody. Murine gammaherpesvirus-68 (MHV-68) represents an accessible model with which to address how resistance to neutralization is achieved and how overcoming it might improve infection control. The MHV-68 glycoprotein B (gB), like that of other herpesviruses, is a virion protein that is essential for infectivity. As such, it presents a potential neutralization target. In order to test whether virus-induced antibodies reduce virion infectivity by binding to gB, monoclonal antibodies (mAbs) were derived from MHV-68-infected mice. gB-specific mAbs were common, but only an IgM specific for the gB N terminus reduced virion infectivity significantly. It inhibited MHV-68 entry into BHK-21 cells at a post-binding step that was linked closely to membrane fusion. Reducing the mAb to IgM monomers compromised neutralization severely, suggesting that a pentameric structure was crucial to its function. Antibody treatment never blocked BHK-21 cell infection completely and blocked the infection of NMuMG epithelial cells hardly at all. Virions saturated with antibody also remained infectious to mice. Thus, the MHV-68 gB presents at best a very difficult target for antibody-mediated neutralization.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82313-0
2006-12-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/12/3515.html?itemId=/content/journal/jgv/10.1099/vir.0.82313-0&mimeType=html&fmt=ahah

References

  1. Adler, H., Messerle, M., Wagner, M. & Koszinowski, U. H. ( 2000; ). Cloning and mutagenesis of the murine gammaherpesvirus 68 genome as an infectious bacterial artificial chromosome. J Virol 74, 6964–6974.[CrossRef]
    [Google Scholar]
  2. Akula, S. M., Pramod, N. P., Wang, F.-Z. & Chandran, B. ( 2001; ). Human herpesvirus 8 envelope-associated glycoprotein B interacts with heparan sulfate-like moieties. Virology 284, 235–249.[CrossRef]
    [Google Scholar]
  3. Akula, S. M., Pramod, N. P., Wang, F.-Z. & Chandran, B. ( 2002; ). Integrin α3β1 (CD 49c/29) is a cellular receptor for Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8) entry into the target cells. Cell 108, 407–419.[CrossRef]
    [Google Scholar]
  4. Austin, C. D., Wen, X., Gazzard, L., Nelson, C., Scheller, R. H. & Scales, S. J. ( 2005; ). Oxidizing potential of endosomes and lysosomes limits intracellular cleavage of disulfide-based antibody–drug conjugates. Proc Natl Acad Sci U S A 102, 17987–17992.[CrossRef]
    [Google Scholar]
  5. Boname, J. M., de Lima, B. D., Lehner, P. J. & Stevenson, P. G. ( 2004; ). Viral degradation of the MHC class I peptide loading complex. Immunity 20, 305–317.[CrossRef]
    [Google Scholar]
  6. Boname, J. M., May, J. S. & Stevenson, P. G. ( 2005; ). Murine gammaherpesvirus 68 open reading frame 11 encodes a nonessential virion component. J Virol 79, 3163–3168.[CrossRef]
    [Google Scholar]
  7. Boppana, S. B., Rivera, L. B., Fowler, K. B., Mach, M. & Britt, W. J. ( 2001; ). Intrauterine transmission of cytomegalovirus to infants of women with preconceptional immunity. N Engl J Med 344, 1366–1371.[CrossRef]
    [Google Scholar]
  8. Coleman, H. M., de Lima, B., Morton, V. & Stevenson, P. G. ( 2003; ). Murine gammaherpesvirus 68 lacking thymidine kinase shows severe attenuation of lytic cycle replication in vivo but still establishes latency. J Virol 77, 2410–2417.[CrossRef]
    [Google Scholar]
  9. Cranage, M. P., Kouzarides, T., Bankier, A. T. & 8 other authors ( 1986; ). Identification of the human cytomegalovirus glycoprotein B gene and induction of neutralizing antibodies via its expression in recombinant vaccinia virus. EMBO J 5, 3057–3063.
    [Google Scholar]
  10. de Lima, B. D., May, J. S. & Stevenson, P. G. ( 2004; ). Murine gammaherpesvirus 68 lacking gp150 shows defective virion release but establishes normal latency in vivo. J Virol 78, 5103–5112.[CrossRef]
    [Google Scholar]
  11. Dialyna, I. A., Graham, D., Rezaee, R., Blue, C. E., Stavrianeas, N. G., Neisters, H. G. M., Spandidos, D. A. & Blackbourn, D. J. ( 2004; ). Anti-HHV-8/KSHV antibodies in infected individuals inhibit infection in vitro. AIDS 18, 1263–1270.[CrossRef]
    [Google Scholar]
  12. Fenner, F., McAuslan, B. R., Mims, C. A., Sambrook, J. & White, D. O. ( 1974; ). The Biology of Animal Viruses, 2nd edn, pp. 408–418. London: Academic Press.
  13. Flaño, E., Kim, I.-J., Woodland, D. L. & Blackman, M. A. ( 2002; ). γ-Herpesvirus latency is preferentially maintained in splenic germinal center and memory B cells. J Exp Med 196, 1363–1372.[CrossRef]
    [Google Scholar]
  14. Fuki, I. V., Meyer, M. E. & Williams, K. J. ( 2000; ). Transmembrane and cytoplasmic domains of syndecan mediate a multi-step endocytic pathway involving detergent-insoluble membrane rafts. Biochem J 351, 607–612.[CrossRef]
    [Google Scholar]
  15. Gangappa, S., Kapadia, S. B., Speck, S. H. & Virgin, H. W., IV ( 2002; ). Antibody to a lytic cycle viral protein decreases gammaherpesvirus latency in B-cell-deficient mice. J Virol 76, 11460–11468.[CrossRef]
    [Google Scholar]
  16. Gill, M. B., Gillet, L., Colaco, S., May, J. S., de Lima, B. D. & Stevenson, P. G. ( 2006; ). Murine gammaherpesvirus-68 glycoprotein H–glycoprotein L complex is a major target for neutralizing monoclonal antibodies. J Gen Virol 87, 1465–1475.[CrossRef]
    [Google Scholar]
  17. Gorman, S., Harvey, N. L., Moro, D., Lloyd, M. L., Voigt, V., Smith, L. M., Lawson, M. A. & Shellam, G. R. ( 2006; ). Mixed infection with multiple strains of murine cytomegalovirus occurs following simultaneous or sequential infection of immunocompetent mice. J Gen Virol 87, 1123–1132.[CrossRef]
    [Google Scholar]
  18. Janz, A., Oezel, M., Kurzeder, C., Mautner, J., Pich, D., Kost, M., Hammerschmidt, W. & Delecluse, H.-J. ( 2000; ). Infectious Epstein-Barr virus lacking major glycoprotein BLLF1 (gp350/220) demonstrates the existence of additional viral ligands. J Virol 74, 10142–10152.[CrossRef]
    [Google Scholar]
  19. Klein, R. J. ( 1989; ). Reinfections and site-specific immunity in herpes simplex virus infections. Vaccine 7, 380–381.[CrossRef]
    [Google Scholar]
  20. Kozuch, O., Reichel, M., Lesso, J., Remenova, A., Labuda, M., Lysy, J. & Mistrikova, J. ( 1993; ). Further isolation of murine herpesviruses from small mammals in southwestern Slovakia. Acta Virol 37, 101–105.
    [Google Scholar]
  21. Lopes, F. B., Colaco, S., May, J. S. & Stevenson, P. G. ( 2004; ). Characterization of the murine gammaherpesvirus 68 glycoprotein B. J Virol 78, 13370–13375.[CrossRef]
    [Google Scholar]
  22. Lopper, M. & Compton, T. ( 2004; ). Coiled-coil domains in glycoproteins B and H are involved in human cytomegalovirus membrane fusion. J Virol 78, 8333–8341.[CrossRef]
    [Google Scholar]
  23. May, J. S., Colaco, S. & Stevenson, P. G. ( 2005a; ). Glycoprotein M is an essential lytic replication protein of the murine gammaherpesvirus 68. J Virol 79, 3459–3467.[CrossRef]
    [Google Scholar]
  24. May, J. S., Walker, J., Colaco, S. & Stevenson, P. G. ( 2005b; ). The murine gammaherpesvirus 68 ORF27 gene product contributes to intercellular viral spread. J Virol 79, 5059–5068.[CrossRef]
    [Google Scholar]
  25. May, J. S., Coleman, H. M., Boname, J. M. & Stevenson, P. G. ( 2005c; ). Murine gammaherpesvirus-68 ORF28 encodes a non-essential virion glycoprotein. J Gen Virol 86, 919–928.[CrossRef]
    [Google Scholar]
  26. Moorman, N. J., Lin, C. Y. & Speck, S. H. ( 2004; ). Identification of candidate gammaherpesvirus 68 genes required for virus replication by signature-tagged transposon mutagenesis. J Virol 78, 10282–10290.[CrossRef]
    [Google Scholar]
  27. Naranatt, P. P., Akula, S. M. & Chandran, B. ( 2002; ). Characterization of γ2-human herpesvirus-8 glycoproteins gH and gL. Arch Virol 147, 1349–1370.[CrossRef]
    [Google Scholar]
  28. Pantophlet, R. & Burton, D. R. ( 2006; ). GP120: target for neutralizing HIV-1 antibodies. Annu Rev Immunol 24, 739–769.[CrossRef]
    [Google Scholar]
  29. Pereira, L., Ali, M., Kousoulas, K., Huo, B. & Banks, T. ( 1989; ). Domain structure of herpes simplex virus 1 glycoprotein B: neutralizing epitopes map in regions of continuous and discontinuous residues. Virology 172, 11–24.[CrossRef]
    [Google Scholar]
  30. Pertel, P. E. ( 2002; ). Human herpesvirus 8 glycoprotein B (gB), gH, and gL can mediate cell fusion. J Virol 76, 4390–4400.[CrossRef]
    [Google Scholar]
  31. Sangster, M. Y., Topham, D. J., D'Costa, S., Cardin, R. D., Marion, T. N., Myers, L. K. & Doherty, P. C. ( 2000; ). Analysis of the virus-specific and nonspecific B cell response to a persistent B-lymphotropic gammaherpesvirus. J Immunol 164, 1820–1828.[CrossRef]
    [Google Scholar]
  32. Sitki-Green, D., Covington, M. & Raab-Traub, N. ( 2003; ). Compartmentalization and transmission of multiple Epstein-Barr virus strains in asymptomatic carriers. J Virol 77, 1840–1847.[CrossRef]
    [Google Scholar]
  33. Song, M. J., Hwang, S., Wong, W. H., Wu, T.-T., Lee, S., Liao, H.-I. & Sun, R. ( 2005; ). Identification of viral genes essential for replication of murine γ-herpesvirus 68 using signature-tagged mutagenesis. Proc Natl Acad Sci U S A 102, 3805–3810.[CrossRef]
    [Google Scholar]
  34. Spiekermann, G. M., Finn, P. W., Ward, E. S., Dumont, J., Dickinson, B. L., Blumberg, R. S. & Lencer, W. I. ( 2002; ). Receptor-mediated immunoglobulin G transport across mucosal barriers in adult life: functional expression of FcRn in the mammalian lung. J Exp Med 196, 303–310.[CrossRef]
    [Google Scholar]
  35. Stevenson, P. G. & Doherty, P. C. ( 1998; ). Kinetic analysis of the specific host response to a murine gammaherpesvirus. J Virol 72, 943–949.
    [Google Scholar]
  36. Stevenson, P. G. & Doherty, P. C. ( 1999; ). Non-antigen-specific B-cell activation following murine gammaherpesvirus infection is CD4 independent in vitro but CD4 dependent in vivo. J Virol 73, 1075–1079.
    [Google Scholar]
  37. Stevenson, P. G. & Efstathiou, S. ( 2005; ). Immune mechanisms in murine gammaherpesvirus-68 infection. Viral Immunol 18, 445–456.[CrossRef]
    [Google Scholar]
  38. Stevenson, P. G., Efstathiou, S., Doherty, P. C. & Lehner, P. J. ( 2000; ). Inhibition of MHC class I-restricted antigen presentation by γ2-herpesviruses. Proc Natl Acad Sci U S A 97, 8455–8460.[CrossRef]
    [Google Scholar]
  39. Stevenson, P. G., May, J. S., Smith, X. G., Marques, S., Adler, H., Koszinowski, U. H., Simas, J. P. & Efstathiou, S. ( 2002; ). K3-mediated evasion of CD8+ T cells aids amplification of a latent γ-herpesvirus. Nat Immunol 3, 733–740.
    [Google Scholar]
  40. Stewart, J. P., Micali, N., Usherwood, E. J., Bonina, L. & Nash, A. A. ( 1999; ). Murine gamma-herpesvirus 68 glycoprotein 150 protects against virus-induced mononucleosis: a model system for gamma-herpesvirus vaccination. Vaccine 17, 152–157.[CrossRef]
    [Google Scholar]
  41. Sunil-Chandra, N. P., Efstathiou, S. & Nash, A. A. ( 1992a; ). Murine gammaherpesvirus 68 establishes a latent infection in mouse B lymphocytes in vivo. J Gen Virol 73, 3275–3279.[CrossRef]
    [Google Scholar]
  42. Sunil-Chandra, N. P., Efstathiou, S., Arno, J. & Nash, A. A. ( 1992b; ). Virological and pathological features of mice infected with murine gammaherpesvirus 68. J Gen Virol 73, 2347–2356.[CrossRef]
    [Google Scholar]
  43. Takeda, K., Okuno, T., Isegawa, Y. & Yamanishi, K. ( 1996; ). Identification of a variant A-specific neutralizing epitope on glycoprotein B (gB) of human herpesvirus-6 (HHV-6). Virology 222, 176–183.[CrossRef]
    [Google Scholar]
  44. Thorley-Lawson, D. A. & Poodry, C. A. ( 1982; ). Identification and isolation of the main component (gp350-gp220) of Epstein-Barr virus responsible for generating neutralizing antibodies in vivo. J Virol 43, 730–736.
    [Google Scholar]
  45. Turner, A., Bruun, B., Minson, T. & Browne, H. ( 1998; ). Glycoproteins gB, gD, and gHgL of herpes simplex virus type 1 are necessary and sufficient to mediate membrane fusion in a Cos cell transfection system. J Virol 72, 873–875.
    [Google Scholar]
  46. Vey, M., Schäfer, W., Reis, B., Ohuchi, R., Britt, W., Garten, W., Klenk, H.-D. & Radsak, K. ( 1995; ). Proteolytic processing of human cytomegalovirus glycoprotein B (gpUL55) is mediated by the human endoprotease furin. Virology 206, 746–749.[CrossRef]
    [Google Scholar]
  47. Wang, F.-Z., Akula, S. M., Sharma-Walia, N., Zeng, L. & Chandran, B. ( 2003a; ). Human herpesvirus 8 envelope glycoprotein B mediates cell adhesion via its RGD sequence. J Virol 77, 3131–3147.[CrossRef]
    [Google Scholar]
  48. Wang, X., Huong, S.-M., Chiu, M. L., Raab-Traub, N. & Huang, E.-S. ( 2003b; ). Epidermal growth factor receptor is a cellular receptor for human cytomegalovirus. Nature 424, 456–461.[CrossRef]
    [Google Scholar]
  49. Xu, J., Lyons, P. A., Carter, M. D., Booth, T. W. M., Davis-Poynter, N. J., Shellam, G. R. & Scalzo, A. A. ( 1996; ). Assessment of antigenicity and genetic variation of glycoprotein B of murine cytomegalovirus. J Gen Virol 77, 49–59.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82313-0
Loading
/content/journal/jgv/10.1099/vir.0.82313-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error