1887

Abstract

The 5′ and 3′ non-translated regions (NTRs) of mRNAs of eukaryotes and their viruses often contain translational enhancers, including internal ribosomal entry sites (IRESs) comprised in the 5′ leaders of many uncapped viral mRNAs. (BRV) has a genome composed of two uncapped, polyadenylated RNAs with relatively short 5′ NTRs, almost devoid of secondary structure. In this work, a role of the RNA2 5′ NTR in translation was studied by using mono- and dicistronic and luciferase reporter mRNAs in protoplasts of . The RNA2 5′ leader was found to confer efficient translation compared with the control 5′ NTR, and each half of the BRV leader was essential for stimulatory function. Such efficient translational enhancement was mediated, at least in part, through an IRES mechanism. Multiple RNA2 5′ NTR regions, complementary to a fragment of plant 18S rRNA demonstrated previously to be accessible for intermolecular mRNA–rRNA interactions and conserved between eukaryotes, were shown to be important for efficient translation. Similar mRNA–rRNA base-pairing potential was also predicted for the 5′ leaders of other nepoviruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82307-0
2007-01-01
2019-09-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/1/286.html?itemId=/content/journal/jgv/10.1099/vir.0.82307-0&mimeType=html&fmt=ahah

References

  1. Akbergenov, R. Zh., Zhanybekova, S. Sh., Kryldakov, R. V., Zhigailov, A., Polimbetova, N. S., Hohn, T. & Iskakov, B. K. ( 2004; ). ARC-1, a sequence element complementary to an internal 18S rRNA segment, enhances translation efficiency in plants when present in the leader or intercistronic region of mRNAs. Nucleic Acids Res 32, 239–247.[CrossRef]
    [Google Scholar]
  2. Basso, J., Dallaire, P., Charest, P. J., Devantier, Y. & Laliberté, J.-F. ( 1994; ). Evidence for an internal ribosome entry site within the 5′ non-translated region of turnip mosaic potyvirus RNA. J Gen Virol 75, 3157–3165.[CrossRef]
    [Google Scholar]
  3. Bedard, K. M. & Semler, B. L. ( 2004; ). Regulation of picornavirus gene expression. Microbes Infect 6, 702–713.[CrossRef]
    [Google Scholar]
  4. Belsham, G. J. & Lomonossoff, G. P. ( 1991; ). The mechanism of translation of cowpea mosaic virus middle component RNA: no evidence for internal initiation from experiments in an animal cell transient expression system. J Gen Virol 72, 3109–3113.[CrossRef]
    [Google Scholar]
  5. Bradford, M. M. ( 1976; ). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72, 248–254.[CrossRef]
    [Google Scholar]
  6. Carrington, J. C. & Freed, D. D. ( 1990; ). Cap-independent enhancement of translation by a plant potyvirus 5′ nontranslated region. J Virol 64, 1590–1597.
    [Google Scholar]
  7. Chiu, W.-W., Kinney, R. M. & Dreher, T. W. ( 2005; ). Control of translation by the 5′- and 3′-terminal regions of the dengue virus genome. J Virol 79, 8303–8315.[CrossRef]
    [Google Scholar]
  8. Chu, P. W. G., Boccardo, G. & Francki, R. I. B. ( 1981; ). Requirement of a genome-associated protein of tobacco ringspot virus for infectivity but not for in vitro translation. Virology 109, 428–430.[CrossRef]
    [Google Scholar]
  9. Cotton, S., Dufresne, P. J., Thivierge, K., Ide, C. & Fortin, M. G. ( 2006; ). The VPgPro protein of Turnip mosaic virus: in vitro inhibition of translation from a ribonuclease activity. Virology 351, 92–100.[CrossRef]
    [Google Scholar]
  10. Czibener, C., Alvarez, D., Scodeller, E. & Gamarnik, A. V. ( 2005; ). Characterization of internal ribosomal entry sites of Triatoma virus. J Gen Virol 86, 2275–2280.[CrossRef]
    [Google Scholar]
  11. Dinkova, T. D., Zepeda, H., Martínez-Salas, E., Martínez, L. M., Nieto-Sotelo, J. & de Jiménez, E. S. ( 2005; ). Cap-independent translation of maize Hsp101. Plant J 41, 722–731.[CrossRef]
    [Google Scholar]
  12. Dorokhov, Yu. L., Ivanov, P. A., Komarova, T. V., Skulachev, M. V. & Atabekov, J. G. ( 2006; ). An internal ribosome entry site located upstream of the crucifer-infecting tobamovirus coat protein (CP) gene can be used for CP synthesis in vivo. J Gen Virol 87, 2693–2697.[CrossRef]
    [Google Scholar]
  13. Dreher, T. W. & Miller, W. A. ( 2006; ). Translational control in positive strand RNA plant viruses. Virology 344, 185–197.[CrossRef]
    [Google Scholar]
  14. Dresios, J., Chappell, S. A., Zhou, W. & Mauro, V. P. ( 2006; ). An mRNA-rRNA base-pairing mechanism for translation initiation in eukaryotes. Nat Struct Mol Biol 13, 30–34.[CrossRef]
    [Google Scholar]
  15. Fabian, M. R. & White, K. A. ( 2004; ). 5′-3′ RNA-RNA interaction facilitates cap- and poly(A) tail-independent translation of tomato bushy stunt virus mRNA. J Biol Chem 279, 28862–28872.[CrossRef]
    [Google Scholar]
  16. Fabian, M. R. & White, K. A. ( 2006; ). Analysis of a 3′-translation enhancer in a tombusvirus: a dynamic model for RNA–RNA interactions of mRNA termini. RNA 12, 1304–1314.[CrossRef]
    [Google Scholar]
  17. Florez, P. M., Sessions, O. M., Wagner, E. J., Gromeier, M. & Garcia-Blanco, M. A. ( 2005; ). The polypyrimidine tract binding protein is required for efficient picornavirus gene expression and propagation. J Virol 79, 6172–6179.[CrossRef]
    [Google Scholar]
  18. Gallie, D. R. ( 1991; ). The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. Genes Dev 5, 2108–2116.[CrossRef]
    [Google Scholar]
  19. Gallie, D. R. ( 2002; ). The 5′-leader of tobacco mosaic virus promotes translation through enhanced recruitment of eIF4F. Nucleic Acids Res 30, 3401–3411.[CrossRef]
    [Google Scholar]
  20. Gallie, D. R., Tanguay, R. L. & Leathers, V. ( 1995; ). The tobacco etch viral 5′ leader and poly(A) tail are functionally synergistic regulators of translation. Gene 165, 233–238.[CrossRef]
    [Google Scholar]
  21. Gaur, N. A., Puri, N., Karnani, N., Mukhopadhyay, G., Goswami, S. K. & Prasad, R. ( 2004; ). Identification of a negative regulatory element which regulates basal transcription of a multidrug resistance gene CDR1 of Candida albicans. FEMS Yeast Res 4, 389–399.[CrossRef]
    [Google Scholar]
  22. Goodfellow, I., Chaudhry, Y., Gioldasi, I., Gerondopoulos, A., Natoni, A., Labrie, L., Laliberté, J.-F. & Roberts, L. ( 2005; ). Calicivirus translation initiation requires an interaction between VPg and eIF4E. EMBO Rep 6, 968–972.[CrossRef]
    [Google Scholar]
  23. Griffiths, A. & Coen, D. M. ( 2005; ). An unusual internal ribosome entry site in the herpes simplex virus thymidine kinase gene. Proc Natl Acad Sci U S A 102, 9667–9672.[CrossRef]
    [Google Scholar]
  24. Gultyaev, A. P., van Batenburg, F. H. D. & Pleij, C. W. A. ( 1995; ). The computer simulation of RNA folding pathways using a genetic algorithm. J Mol Biol 250, 37–51.[CrossRef]
    [Google Scholar]
  25. Guo, L., Allen, E. M. & Miller, W. A. ( 2001; ). Base-pairing between untranslated regions facilitates translation of uncapped, nonpolyadenylated viral RNA. Mol Cell 7, 1103–1109.[CrossRef]
    [Google Scholar]
  26. Hellen, C. U. T. & Cooper, J. I. ( 1987; ). The genome-linked protein of cherry leaf roll virus. J Gen Virol 68, 2913–2917.[CrossRef]
    [Google Scholar]
  27. Hewlett, M. J., Rose, J. K. & Baltimore, D. ( 1976; ). 5′-Terminal structure of poliovirus polyribosomal RNA is pUp. Proc Natl Acad Sci U S A 73, 327–330.[CrossRef]
    [Google Scholar]
  28. Hu, M. C.-Y., Tranque, P., Edelman, G. M. & Mauro, V. P. ( 1999; ). rRNA-complementarity in the 5′ untranslated region of mRNA specifying the Gtx homeodomain protein: evidence that base-pairing to 18S rRNA affects translational efficiency. Proc Natl Acad Sci U S A 96, 1339–1344.[CrossRef]
    [Google Scholar]
  29. Hunt, S. L. & Jackson, R. J. ( 1999; ). Polypyrimidine-tract binding protein (PTB) is necessary, but not sufficient, for efficient internal initiation of translation of human rhinovirus-2 RNA. RNA 5, 344–359.[CrossRef]
    [Google Scholar]
  30. Ivanov, P. A., Karpova, O. V., Skulachev, M. V., Tomashevskaya, O. L., Rodionova, N. P., Dorokhov, Yu. L. & Atabekov, J. G. ( 1997; ). A tobamovirus genome that contains an internal ribosome entry site functional in vitro. Virology 232, 32–43.[CrossRef]
    [Google Scholar]
  31. Jaag, H. M., Kawchuk, L., Rohde, W., Fischer, R., Emans, N. & Prüfer, D. ( 2003; ). An unusual internal ribosomal entry site of inverted symmetry directs expression of a potato leafroll polerovirus replication-associated protein. Proc Natl Acad Sci U S A 100, 8939–8944.[CrossRef]
    [Google Scholar]
  32. Jackson, R. J. ( 2000; ). Comparative view of initiation site selection mechanisms. In Translational Control of Gene Expression, pp. 127–183. Edited by N. Sonenberg, J. W. B. Hershey & M. B. Mathews. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  33. Jackson, R. J. ( 2005; ). Alternative mechanisms of initiating translation of mammalian mRNAs. Biochem Soc Trans 33, 1231–1241.[CrossRef]
    [Google Scholar]
  34. Jang, S. K., Krausslich, H.-G., Nicklin, M. J. H., Duke, G. M., Palmenberg, A. C. & Wimmer, E. ( 1988; ). A segment of the 5′ nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J Virol 62, 2636–2643.
    [Google Scholar]
  35. Karetnikov, A., Keränen, M. & Lehto, K. ( 2004; ). 3′ terminal sequences of Blackcurrant reversion virus (BRV) RNA2 are highly conserved in different virus isolates, and affect its translational efficiency. Acta Hortic 656, 109–114. http://www.actahort.org/books/656/656_16.htm
    [Google Scholar]
  36. Karetnikov, A., Keränen, M. & Lehto, K. ( 2006; ). Role of the RNA2 3′ non-translated region of Blackcurrant reversion nepovirus in translational regulation. Virology 354, 178–191.[CrossRef]
    [Google Scholar]
  37. Kean, K. M. ( 2003; ). The role of mRNA 5′-noncoding and 3′-end sequences on 40S ribosomal subunit recruitment, and how RNA viruses successfully compete with cellular mRNAs to ensure their own protein synthesis. Biol Cell 95, 129–139.[CrossRef]
    [Google Scholar]
  38. Kneller, E. L. P., Rakotondrafara, A. M. & Miller, W. A. ( 2006; ). Cap-independent translation of plant viral RNAs. Virus Res 119, 63–75.[CrossRef]
    [Google Scholar]
  39. Koenig, I. & Fritsch, C. ( 1982; ). A protein linked at the 5′ end of satellite and genomic tomato black ring virus RNAs: study of in vitro translation after protease treatment. J Gen Virol 60, 343–353.[CrossRef]
    [Google Scholar]
  40. Komar, A. A. & Hatzoglou, M. ( 2005; ). Internal ribosome entry sites in cellular mRNAs: mystery of their existence. J Biol Chem 280, 23425–23428.[CrossRef]
    [Google Scholar]
  41. Krab, I. M., Caldwell, C., Gallie, D. R. & Bol, J. F. ( 2005; ). Coat protein enhances translational efficiency of Alfalfa mosaic virus RNAs and interacts with the eIF4G component of initiation factor eIF4F. J Gen Virol 86, 1841–1849.[CrossRef]
    [Google Scholar]
  42. Latvala-Kilby, S. & Lehto, K. ( 1999; ). The complete nucleotide sequence of RNA2 of blackcurrant reversion nepovirus. Virus Res 65, 87–92.[CrossRef]
    [Google Scholar]
  43. Lehto, K., Lemmetty, A. & Keränen, M. ( 2004; ). The long 3′ non-translated regions of blackcurrant reversion virus RNAs are highly conserved between virus isolates representing different phenotypes and geographic origins. Arch Virol 149, 1867–1875.
    [Google Scholar]
  44. Lemmetty, A., Latvala, S., Jones, A. T., Susi, P., McGavin, W. J. & Lehto, K. ( 1997; ). Purification and properties of a new virus from black currant, its affinities with nepoviruses, and its close association with black currant reversion disease. Phytopathology 87, 404–413.[CrossRef]
    [Google Scholar]
  45. López-Lastra, M., Rivas, A. & Barría, M. I. ( 2005; ). Protein synthesis in eukaryotes: the growing biological relevance of cap-independent translation initiation. Biol Res 38, 121–146.
    [Google Scholar]
  46. Marín, C. & Boronat, A. ( 1998; ). Nucleotide sequence of an Arabidopsis cDNA encoding a protein with similarity to mammalian polypyrimidine tract-binding protein (PTB) (accession no. AF076924) (PGR98-157). Plant Physiol 118, 330.
    [Google Scholar]
  47. Martinez-Salas, E. & Fernandez-Miragall, O. ( 2004; ). Picornavirus IRES: structure function relationship. Curr Pharm Des 10, 3757–3767.[CrossRef]
    [Google Scholar]
  48. Matsuda, D., Bauer, L., Tinnesand, K. & Dreher, T. W. ( 2004; ). Expression of the two nested overlapping reading frames of turnip yellow mosaic virus RNA is enhanced by a 5′ cap and by 5′ and 3′ viral sequences. J Virol 78, 9325–9335.[CrossRef]
    [Google Scholar]
  49. Mauro, V. P. & Edelman, G. M. ( 2002; ). The ribosome filter hypothesis. Proc Natl Acad Sci U S A 99, 12031–12036.[CrossRef]
    [Google Scholar]
  50. Mayo, M. A. & Robinson, D. J. ( 1996; ). Nepoviruses: molecular biology and replication. In The Plant Viruses, vol. 5, Polyhedral Virions and Bipartite RNA Genomes, pp. 139–185. Edited by B. D. Harrison & A. F. Murant. New York: Plenum.
  51. Merrick, W. C. ( 2004; ). Cap-dependent and cap-independent translation in eukaryotic systems. Gene 332, 1–11.[CrossRef]
    [Google Scholar]
  52. Meulewaeter, F., Danthinne, X., Van Montagu, M. & Cornelissen, M. ( 1998; ). 5′ and 3′-sequences of satellite tobacco necrosis virus RNA promoting translation in tobacco. Plant J 14, 169–176.[CrossRef]
    [Google Scholar]
  53. Mitchell, S. A., Spriggs, K. A., Bushell, M., Evans, J. R., Stoneley, M., Le Quesne, J. P. C., Spriggs, R. V. & Willis, A. E. ( 2005; ). Identification of a motif that mediates polypyrimidine tract-binding protein-dependent internal ribosome entry. Genes Dev 19, 1556–1571.[CrossRef]
    [Google Scholar]
  54. Mokrejš, M., Vopálenský, V., Kolenatý, O., Mašek, T., Feketová, Z., Sekyrová, P., Škaloudová, B., Kříž, V. & Pospíšek, M. ( 2006; ). IRESite: the database of experimentally verified IRES structures (www.iresite.org). Nucleic Acids Res 34, D125–D130.[CrossRef]
    [Google Scholar]
  55. Niepel, M. & Gallie, D. R. ( 1999; ). Identification and characterization of the functional elements within the tobacco etch virus 5′ leader required for cap-independent translation. J Virol 73, 9080–9088.
    [Google Scholar]
  56. Nomoto, A., Lee, Y. F. & Wimmer, E. ( 1976; ). The 5′ end of poliovirus mRNA is not capped with m7G(5′)ppp(5′)Np. Proc Natl Acad Sci U S A 73, 375–380.[CrossRef]
    [Google Scholar]
  57. Nomoto, A., Kitamura, N., Golini, F. & Wimmer, E. ( 1977; ). The 5′-terminal structures of poliovirion RNA and poliovirus mRNA differ only in the genome-linked protein VPg. Proc Natl Acad Sci U S A 74, 5345–5349.[CrossRef]
    [Google Scholar]
  58. Pacot-Hiriart, C., Latvala-Kilby, S. & Lehto, K. ( 2001; ). Nucleotide sequence of black currant reversion associated nepovirus RNA1. Virus Res 79, 145–152.[CrossRef]
    [Google Scholar]
  59. Pelletier, J. & Sonenberg, N. ( 1988; ). Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334, 320–325.[CrossRef]
    [Google Scholar]
  60. Pickering, B. M. & Willis, A. E. ( 2005; ). The implications of structured 5′ untranslated regions on translation and disease. Semin Cell Dev Biol 16, 39–47.[CrossRef]
    [Google Scholar]
  61. Pisarev, A. V., Shirokikh, N. E. & Hellen, C. U. T. ( 2005; ). Translation initiation by factor-independent binding of eukaryotic ribosomes to internal ribosomal entry sites. C R Biol 328, 589–605.[CrossRef]
    [Google Scholar]
  62. Sarnow, P., Cevallos, R. C. & Jan, E. ( 2005; ). Takeover of host ribosomes by divergent IRES elements. Biochem Soc Trans 33, 1479–1482.[CrossRef]
    [Google Scholar]
  63. Skulachev, M. V., Ivanov, P. A., Karpova, O. V., Korpela, T., Rodionova, N. P., Dorokhov, Yu. L. & Atabekov, J. G. ( 1999; ). Internal initiation of translation directed by the 5′-untranslated region of the tobamovirus subgenomic RNA I2. Virology 263, 139–154.[CrossRef]
    [Google Scholar]
  64. Song, Y., Tzima, E., Ochs, K., Bassili, G., Trusheim, H., Linder, M., Preissner, K. T. & Niepmann, M. ( 2005; ). Evidence for an RNA chaperone function of polypyrimidine tract-binding protein in picornavirus translation. RNA 11, 1809–1824.[CrossRef]
    [Google Scholar]
  65. Spriggs, K. A., Mitchell, S. A. & Willis, A. E. ( 2005; ). Investigation of interactions of polypyrimidine tract-binding protein with artificial internal ribosome entry segments. Biochem Soc Trans 33, 1483–1486.[CrossRef]
    [Google Scholar]
  66. Stanley, J., Rottier, P., Davies, J. W. & van Kammen, A. ( 1978; ). A protein linked to the 5′ termini of both RNA components of the cowpea mosaic virus genome. Nucleic Acids Res 5, 4505–4522.[CrossRef]
    [Google Scholar]
  67. Susi, P. ( 2004; ). Black currant reversion virus, a mite-transmitted nepovirus. Mol Plant Pathol 5, 167–173.[CrossRef]
    [Google Scholar]
  68. Terenin, I. M., Dmitriev, S. E., Andreev, D. E., Royall, E., Belsham, G. J., Roberts, L. O. & Shatsky, I. N. ( 2005; ). A cross-kingdom internal ribosome entry site reveals a simplified mode of internal ribosome entry. Mol Cell Biol 25, 7879–7888.[CrossRef]
    [Google Scholar]
  69. Thivierge, K., Nicaise, V., Dufresne, P. J., Cotton, S., Laliberté, J.-F., Le Gall, O. & Fortin, M. G. ( 2005; ). Plant virus RNAs. Coordinated recruitment of conserved host functions by (+) ssRNA viruses during early infection events. Plant Physiol 138, 1822–1827.[CrossRef]
    [Google Scholar]
  70. Thomas, A. A. M., ter Haar, E., Wellink, J. & Voorma, H. O. ( 1991; ). Cowpea mosaic virus middle component RNA contains a sequence that allows internal binding of ribosomes and that requires eukaryotic initiation factor 4F for optimal translation. J Virol 65, 2953–2959.
    [Google Scholar]
  71. Tranque, P., Hu, M. C.-Y., Edelman, G. M. & Mauro, V. P. ( 1998; ). rRNA complementarity within mRNAs: a possible basis for mRNA-ribosome interactions and translational control. Proc Natl Acad Sci U S A 95, 12238–12243.[CrossRef]
    [Google Scholar]
  72. Vanderhaeghen, R., De Clercq, R., Karimi, M., Van Montagu, M., Hilson, P. & Van Lijsebettens, M. ( 2006; ). Leader sequence of a plant ribosomal protein gene with complementarity to the 18S rRNA triggers in vitro cap-independent translation. FEBS Lett 580, 2630–2636.[CrossRef]
    [Google Scholar]
  73. Verver, J., Le Gall, O., van Kammen, A. & Wellink, J. ( 1991; ). The sequence between nucleotides 161 and 512 of cowpea mosaic virus M RNA is able to support internal initiation of translation in vitro. J Gen Virol 72, 2339–2345.[CrossRef]
    [Google Scholar]
  74. Zeenko, V. & Gallie, D. R. ( 2005; ). Cap-independent translation of tobacco etch virus is conferred by an RNA pseudoknot in the 5′-leader. J Biol Chem 280, 26813–26824.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82307-0
Loading
/content/journal/jgv/10.1099/vir.0.82307-0
Loading

Data & Media loading...

vol. , part 1, pp. 286 – 297

Oligonucleotides used in this study [ PDF] (122 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error