1887

Abstract

Analysis of the full-length sequences of all eight segments of the German wild-bird H5N1 highly pathogenic avian influenza virus index isolate, A//Germany/R65/2006, and an H5N1 isolate from a cat (A/cat/Germany/R606/2006) obtained during an outbreak in February 2006 revealed a very high similarity between these two sequences. One amino acid substitution in the PA gene, encoding a protein involved in virus RNA replication, and one amino acid substitution in the haemagglutinin (HA) protein were observed. Phylogenetic analyses of the HA and neuraminidase nucleotide sequences showed that avian influenza H5N1 isolates from the Astrakhan region located in southern Russia were the closest relatives. Reassortment events could be excluded in comparison with other ‘Qinghai-like’ H5N1 viruses. In addition, an H5N1 isolate originating from a single outbreak in poultry in Germany was found to be related closely to the H5N1 viruses circulating at that time in the wild-bird population.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82300-0
2007-02-01
2019-09-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/2/554.html?itemId=/content/journal/jgv/10.1099/vir.0.82300-0&mimeType=html&fmt=ahah

References

  1. Chen, H., Li, Y., Li, Z., Shi, J., Shinya, K., Deng, G., Qi, Q., Tian, G., Fan, S. & other authors ( 2006; ). Properties and dissemination of H5N1 viruses isolated during an influenza outbreak in migratory waterfowl in western China. J Virol 80, 5976–5983.[CrossRef]
    [Google Scholar]
  2. Fouchier, R. A., Munster, V., Wallensten, A., Bestebroer, T. M., Herfst, S., Smith, D., Rimmelzwaan, G. F., Olsen, B. & Osterhaus, A. D. ( 2005; ). Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. J Virol 79, 2814–2822.[CrossRef]
    [Google Scholar]
  3. Gabriel, G., Dauber, B., Wolff, T., Planz, O., Klenk, H. D. & Stech, J. ( 2005; ). The viral polymerase mediates adaptation of an avian influenza virus to a mammalian host. Proc Natl Acad Sci U S A 102, 18590–18595.[CrossRef]
    [Google Scholar]
  4. Harder, T. C. & Werner, O. ( 2006; ). Avian influenza. http://www.influenzareport.com/ir/ai.htm
  5. Hatta, M., Gao, P., Halfmann, P. & Kawaoka, Y. ( 2001; ). Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science 293, 1840–1842.[CrossRef]
    [Google Scholar]
  6. Hoffmann, E., Stech, J., Guan, Y., Webster, R. G. & Perez, D. R. ( 2001; ). Universal primer set for the full-length amplification of all influenza A viruses. Arch Virol 146, 2275–2289.[CrossRef]
    [Google Scholar]
  7. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  8. Kumar, S., Tamura, K. & Nei, M. ( 2004; ). mega3: integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef]
    [Google Scholar]
  9. Matrosovich, M. N., Gambaryan, A. S., Teneberg, S., Piskarev, V. E., Yamnikova, S. S., Lvov, D. K., Robertson, J. S. & Karlsson, K. A. ( 1997; ). Avian influenza A viruses differ from human viruses by recognition of sialyloligosaccharides and gangliosides and by a higher conservation of the HA receptor-binding site. Virology 233, 224–234.[CrossRef]
    [Google Scholar]
  10. Matrosovich, M., Tuzikov, A., Bovin, N., Gambaryan, A., Klimov, A., Castrucci, M. R., Donatelli, I. & Kawaoka, Y. ( 2000; ). Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals. J Virol 74, 8502–8512.[CrossRef]
    [Google Scholar]
  11. Matrosovich, M. N., Matrosovich, T. Y., Gray, T., Roberts, N. A. & Klenk, H. D. ( 2004; ). Human and avian influenza viruses target different cell types in cultures of human airway epithelium. Proc Natl Acad Sci U S A 101, 4620–4624.[CrossRef]
    [Google Scholar]
  12. Rott, R., Klenk, H. D., Nagai, Y. & Tashiro, M. ( 1995; ). Influenza viruses, cell enzymes, and pathogenicity. Am J Respir Crit Care Med 152, S16–S19.[CrossRef]
    [Google Scholar]
  13. Shestopalov, A. M., Durimanov, A. G., Evseenko, V. A., Ternovoi, V. A., Rassadkin, Y. N., Razumova, Y. V., Zaykovskaya, A. V., Zolotykh, S. I. & Netesov, S. V. ( 2006; ). H5N1 influenza virus, domestic birds, Western Siberia, Russia. Emerg Infect Dis 12, 1167–1169.[CrossRef]
    [Google Scholar]
  14. Shinya, K., Hamm, S., Hatta, M., Ito, H., Ito, T. & Kawaoka, Y. ( 2004; ). PB2 amino acid at position 627 affects replicative efficiency, but not cell tropism, of Hong Kong H5N1 influenza viruses in mice. Virology 320, 258–266.[CrossRef]
    [Google Scholar]
  15. Shinya, K., Ebina, M., Yamada, S., Ono, M., Kasai, N. & Kawaoka, Y. ( 2006; ). Avian flu: influenza virus receptors in the human airway. Nature 440, 435–436.[CrossRef]
    [Google Scholar]
  16. Strimmer, K. & von Haeseler, A. ( 1997; ). Likelihood-mapping: a simple method to visualize phylogenetic content of a sequence alignment. Proc Natl Acad Sci U S A 94, 6815–6819.[CrossRef]
    [Google Scholar]
  17. Subbarao, E. K., London, W. & Murphy, B. R. ( 1993; ). A single amino acid in the PB2 gene of influenza A virus is a determinant of host range. J Virol 67, 1761–1764.
    [Google Scholar]
  18. van Riel, D., Munster, V. J., de Wit, E., Rimmelzwaan, G. F., Fouchier, R. A., Osterhaus, A. D. & Kuiken, T. ( 2006; ). H5N1 virus attachment to lower respiratory tract. Science 312, 399.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82300-0
Loading
/content/journal/jgv/10.1099/vir.0.82300-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error