1887

Abstract

Geminiviruses are characterized by a circular, single-stranded DNA genome and twinned icosahedral particles. Begomoviruses (whitefly-transmitted geminiviruses) are a major constraint to crop production worldwide. In Brazil, tomato-infecting begomoviruses emerged as serious pathogens over the last 10 years, due to the introduction of a new biotype of the insect vector. Tomato yellow spot virus (ToYSV) is a newly described begomovirus originally isolated from tomato, but phylogenetically closer to viruses from sp. A study was performed to determine the viability of pseudorecombinants formed between the DNA components of ToYSV and other weed- and tomato-infecting begomoviruses from Brazil. Despite its closer relationship to weed-infecting viruses, ToYSV was only capable of forming viable pseudorecombinants with tomato viruses. An infectious pseudorecombinant formed between ToYSV DNA-A and tomato crinkle leaf yellows virus (TCrLYV) DNA-B induced severe symptoms in . This was attributed, at least in part, to the fact that the origins of replication of both components had identical Rep-binding sequences. However, this was not the case for another infectious pseudorecombinant formed between tomato golden mosaic virus (TGMV) DNA-A and ToYSV DNA-B, which have different Rep-binding sequences. These results reinforce the notion that pseudorecombinant formation cannot be explained solely on the basis of phylogenetic relationships and conserved iteron sequences, and suggest that the TGMV Rep protein may be more versatile in terms of recognizing heterologous DNA components than that of ToYSV.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82279-0
2006-12-01
2020-01-26
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/12/3687.html?itemId=/content/journal/jgv/10.1099/vir.0.82279-0&mimeType=html&fmt=ahah

References

  1. Ambrozevicius, L. P., Calegario, R. F., Fontes, E. P. B., de Carvalho, M. G. & Zerbini, F. M. ( 2002; ). Genetic diversity of begomoviruses infecting tomato and associated weeds in Southeastern Brazil. Fitopatol Bras 27, 372–377.[CrossRef]
    [Google Scholar]
  2. Andrade, E. C., Ambrozevicius, L. P., Calegario, R. F., Fontes, E. P. B. & Zerbini, F. M. ( 2002; ). Molecular cloning and characterization of Tomato chlorotic mottle virus (TCMV), a new tomato-infecting begomovirus. Virus Rev Res 7, 153–155.
    [Google Scholar]
  3. Andrade, E. C., Lopes, E. F., Alfenas, P. F., Fontes, E. P. B., Ribeiro, S. G. & Zerbini, F. M. ( 2004; ). Pseudorecombination between begomoviruses from tomato and Sida sp. In Fourth International Geminivirus Symposium (Programme and Abstracts), pp. P3–P9. Cape Town: University of Cape Town.
  4. Aragão, F. J. L., Barros, L. M. G., Brasileiro, A. C. M., Ribeiro, S. G., Smith, F. D., Sanford, J. C., Faria, J. C. & Rech, E. L. ( 1996; ). Inheritance of foreign genes in transgenic bean (Phaseolus vulgaris L.) co-transformed via particle bombardment. Theor Appl Genet 93, 142–150.[CrossRef]
    [Google Scholar]
  5. Argüello-Astorga, G. R. & Ruiz-Medrano, R. ( 2001; ). An iteron-related domain is associated to Motif 1 in the replication proteins of geminiviruses: identification of potential interacting amino acid-base pairs by a comparative approach. Arch Virol 146, 1465–1485.[CrossRef]
    [Google Scholar]
  6. Argüello-Astorga, G., Herrera-Estrella, L. & Rivera-Bustamante, R. ( 1994a; ). Experimental and theoretical definition of geminivirus origin of replication. Plant Mol Biol 26, 553–556.[CrossRef]
    [Google Scholar]
  7. Argüello-Astorga, G. R., Guevara-González, R. G., Herrera-Estrella, L. R. & Rivera-Bustamante, R. F. ( 1994b; ). Geminivirus replication origins have a group-specific organization of interative elements: a model for replication. Virology 203, 90–100.[CrossRef]
    [Google Scholar]
  8. Bedford, I. D., Briddon, R. W., Brown, J. K., Rosell, R. C. & Markham, P. G. ( 1994; ). Geminivirus transmission and biological characterization of Bemisia tabaci (Gennadius) biotypes from different geographic regions. Ann Appl Biol 125, 311–325.[CrossRef]
    [Google Scholar]
  9. Briddon, R. W. ( 2003; ). Cotton leaf curl disease, a multicomponent begomovirus complex. Mol Plant Pathol 4, 427–434.[CrossRef]
    [Google Scholar]
  10. Briddon, R. W. & Markham, P. G. ( 2001; ). Complementation of bipartite begomovirus movement functions by topocuviruses and curtoviruses. Arch Virol 146, 1811–1819.[CrossRef]
    [Google Scholar]
  11. Chatterji, A., Padidam, M., Beachy, R. N. & Fauquet, C. M. ( 1999; ). Identification of replication specificity determinants in two strains of tomato leaf curl virus from New Delhi. J Virol 73, 5481–5489.
    [Google Scholar]
  12. Choi, I.-R. & Stenger, D. C. ( 1995; ). Strain-specific determinants of beet curly top geminivirus DNA replication. Virology 206, 904–912.[CrossRef]
    [Google Scholar]
  13. Costa, A. S. ( 1976; ). Whitefly-transmitted plant diseases. Annu Rev Phytopathol 14, 429–449.[CrossRef]
    [Google Scholar]
  14. Dellaporta, S. L., Wood, J. & Hicks, J. B. ( 1983; ). A plant DNA minipreparation: version II. Plant Mol Biol Rep 1, 19–21.[CrossRef]
    [Google Scholar]
  15. Eagle, P. A., Orozco, B. M. & Hanley-Bowdoin, L. ( 1994; ). A DNA sequence required for geminivirus replication also mediates transcriptional regulation. Plant Cell 6, 1157–1170.[CrossRef]
    [Google Scholar]
  16. Fernandes, A. V., Galvão, R. M., Machado, J. J., Zerbini, F. M. & Fontes, E. P. B. ( 1999; ). Cloning and molecular characterization of A components of two new Sida rhombifolia-infecting geminiviruses. Virus Rev Res 4, 148.
    [Google Scholar]
  17. Fernandes, J. J., Carvalho, M. G., Andrade, E. C., Brommonschenkel, S. H., Fontes, E. P. B. & Zerbini, F. M. ( 2006; ). Biological and molecular properties of Tomato rugose mosaic virus (ToRMV), a new tomato-infecting begomovirus from Brazil. Plant Pathol 55, 513–522.[CrossRef]
    [Google Scholar]
  18. Fontes, E. P. B., Eagle, P. A., Sipe, P. S., Luckow, V. A. & Hanley-Bowdoin, L. ( 1994a; ). Interaction between a geminivirus replication protein and origin DNA is essential for viral replication. J Biol Chem 269, 8459–8465.
    [Google Scholar]
  19. Fontes, E. P. B., Gladfelter, H. J., Schaffer, R. L., Petty, I. T. D. & Hanley-Bowdoin, L. ( 1994b; ). Geminivirus replication origins have a modular organization. Plant Cell 6, 405–416.[CrossRef]
    [Google Scholar]
  20. Frischmuth, T., Roberts, S., von Arnim, A. & Stanley, J. ( 1993; ). Specificity of bipartite geminivirus movement proteins. Virology 196, 666–673.[CrossRef]
    [Google Scholar]
  21. Galvão, R. M., Mariano, A. C., Luz, D. F., Alfenas, P. F., Andrade, E. C., Zerbini, F. M., Almeida, M. R. & Fontes, E. P. B. ( 2003; ). A naturally occurring recombinant DNA-A of a typical bipartite begomovirus does not require the cognate DNA-B to infect Nicotiana benthamiana systemically. J Gen Virol 84, 715–726.[CrossRef]
    [Google Scholar]
  22. Garrido-Ramirez, E. R., Sudarshana, M. & Gilbertson, R. L. ( 2000; ). Bean golden yellow mosaic virus from Chiapas, Mexico: characterization, pseudorecombination with other bean-infecting geminiviruses and germ plasm screening. Phytopathology 90, 1224–1232.[CrossRef]
    [Google Scholar]
  23. Gilbertson, R. L., Hidayat, S. H., Paplomatas, E. J., Rojas, M. R., Hou, Y.-M. & Maxwell, D. P. ( 1993; ). Pseudorecombination between infectious cloned DNA components of tomato mottle and bean dwarf mosaic geminiviruses. J Gen Virol 74, 23–31.[CrossRef]
    [Google Scholar]
  24. Gladfelter, H. J., Eagle, P. A., Fontes, E. P. B., Batts, L. & Hanley-Bowdoin, L. ( 1997; ). Two domains of the AL1 protein mediate geminivirus origin recognition. Virology 239, 186–197.[CrossRef]
    [Google Scholar]
  25. Hamilton, W. D. O., Stein, V. E., Coutts, R. H. A. & Buck, K. W. ( 1984; ). Complete nucleotide sequence of the infectious cloned DNA components of tomato golden mosaic virus: potential coding regions and regulatory sequences. EMBO J 3, 2197–2205.
    [Google Scholar]
  26. Hanley-Bowdoin, L., Settlage, S. B., Orozco, B. M., Nagar, S. & Robertson, D. ( 1999; ). Geminiviruses: models for plant DNA replication, transcription, and cell cycle regulation. CRC Crit Rev Plant Sci 18, 71–106.[CrossRef]
    [Google Scholar]
  27. Hou, Y.-M. & Gilbertson, R. L. ( 1996; ). Increased pathogenicity in a pseudorecombinant bipartite geminivirus correlates with intermolecular recombination. J Virol 70, 5430–5436.
    [Google Scholar]
  28. Hou, Y.-M., Paplomatas, E. J. & Gilbertson, R. L. ( 1998; ). Host adaptation and replication properties of two bipartite geminiviruses and their pseudorecombinants. Mol Plant Microbe Interact 11, 208–217.[CrossRef]
    [Google Scholar]
  29. Ilyina, T. V. & Koonin, E. V. ( 1992; ). Conserved sequence motifs in the initiator proteins for rolling circle DNA replication encoded by diverse replicons from eubacteria, eucaryotes and archaebacteria. Nucleic Acids Res 20, 3279–3285.[CrossRef]
    [Google Scholar]
  30. Ingham, D. J., Pascal, E. & Lazarowitz, S. G. ( 1995; ). Both bipartite geminivirus movement proteins define viral host range, but only BL1 determines viral pathogenicity. Virology 207, 191–204.[CrossRef]
    [Google Scholar]
  31. Jovel, J., Reski, G., Rothenstein, D., Ringel, M., Frischmuth, T. & Jeske, H. ( 2004; ). Sida micrantha mosaic is associated with a complex infection of begomoviruses different from Abutilon mosaic virus. Arch Virol 149, 829–841.[CrossRef]
    [Google Scholar]
  32. Laufs, J., Schumacher, S., Geisler, N., Jupin, I. & Gronenborn, B. ( 1995; ). Identification of the nicking tyrosine of geminivirus Rep protein. FEBS Lett 377, 258–262.[CrossRef]
    [Google Scholar]
  33. Lin, B., Behjatnia, S. A. A., Dry, I. B., Randles, J. W. & Rezaian, M. A. ( 2003; ). High-affinity Rep-binding is not required for the replication of a geminivirus DNA and its satellite. Virology 305, 353–363.[CrossRef]
    [Google Scholar]
  34. Lourenção, A. L. & Nagai, H. ( 1994; ). Outbreaks of Bemisia tabaci in the state of São Paulo. Bragantia 53, 53–59 (in Portuguese).
    [Google Scholar]
  35. Martin, D. & Rybicki, E. ( 2000; ). rdp: detection of recombination amongst aligned sequences. Bioinformatics 16, 562–563.[CrossRef]
    [Google Scholar]
  36. Matyis, J. C., Silva, D. M., Oliveira, A. R. & Costa, A. S. ( 1975; ). Purification and morphology of tomato golden mosaic virus. Summa Phytopathol 1, 267–275 (in Portuguese).
    [Google Scholar]
  37. Monci, F., Sánchez-Campos, S., Navas-Castillo, J. & Moriones, E. ( 2002; ). A natural recombinant between the geminiviruses Tomato yellow leaf curl Sardinia virus and Tomato yellow leaf curl virus exhibits a novel pathogenic phenotype and is becoming prevalent in Spanish populations. Virology 303, 317–326.[CrossRef]
    [Google Scholar]
  38. Morales, F. J. & Anderson, P. K. ( 2001; ). The emergence and dissemination of whitefly-transmitted geminiviruses in Latin America. Arch Virol 146, 415–441.[CrossRef]
    [Google Scholar]
  39. Moriones, E. & Navas-Castillo, J. ( 2000; ). Tomato yellow leaf curl virus, an emerging virus complex causing epidemics worldwide. Virus Res 71, 123–134.[CrossRef]
    [Google Scholar]
  40. Noueiry, A. O., Lucas, W. J. & Gilbertson, R. L. ( 1994; ). Two proteins of a plant DNA virus coordinate nuclear and plasmodesmal transport. Cell 76, 925–932.[CrossRef]
    [Google Scholar]
  41. Padidam, M., Sawyer, S. & Fauquet, C. M. ( 1999; ). Possible emergence of new geminiviruses by frequent recombination. Virology 265, 218–224.[CrossRef]
    [Google Scholar]
  42. Paplomatas, E. J., Patel, V. P., Hou, Y.-M., Noueiry, A. O. & Gilbertson, R. L. ( 1994; ). Molecular characterization of a new sap-transmissible bipartite genome geminivirus infecting tomatoes in Mexico. Phytopathology 84, 1215–1224.[CrossRef]
    [Google Scholar]
  43. Petty, I. T. D., Carter, S. C., Morra, M. R., Jeffrey, J. L. & Olivey, H. E. ( 2000; ). Bipartite geminivirus host adaptation determined cooperatively by coding and noncoding sequences of the genome. Virology 277, 429–438.[CrossRef]
    [Google Scholar]
  44. Pita, J. S., Fondong, V. N., Sangaré, A., Otim-Nape, G. W., Ogwal, S. & Fauquet, C. M. ( 2001; ). Recombination, pseudorecombination and synergism of geminiviruses are determinant keys to the epidemic of severe cassava mosaic disease in Uganda. J Gen Virol 82, 655–665.
    [Google Scholar]
  45. Ramos, P. L., Guevara-González, R. G., Peral, R., Ascencio-Ibañez, J. T., Polston, J. E., Argüello-Astorga, G. R., Vega-Arreguín, J. C. & Rivera-Bustamante, R. F. ( 2003; ). Tomato mottle Taino virus pseudorecombines with PYMV but not with ToMoV: implications for the delimitation of cis- and trans-acting replication specificity determinants. Arch Virol 148, 1697–1712.[CrossRef]
    [Google Scholar]
  46. Ribeiro, S. G., de Ávila, A. C., Bezerra, I. C., Fernandes, J. J., Faria, J. C., Lima, M. F., Gilbertson, R. L., Maciel-Zambolim, E. & Zerbini, F. M. ( 1998; ). Widespread occurrence of tomato geminiviruses in Brazil, associated with the new biotype of the whitefly vector. Plant Dis 82, 830.
    [Google Scholar]
  47. Ribeiro, S. G., Ambrozevícius, L. P., Ávila, A. C. & 7 other authors ( 2003; ). Distribution and genetic diversity of tomato-infecting begomoviruses in Brazil. Arch Virol 148, 281–295.[CrossRef]
    [Google Scholar]
  48. Rojas, M. R., Gilbertson, R. L., Russell, D. R. & Maxwell, D. P. ( 1993; ). Use of degenerate primers in the polymerase chain reaction to detect whitefly-transmitted geminiviruses. Plant Dis 77, 340–347.[CrossRef]
    [Google Scholar]
  49. Rojas, M. R., Noueiry, A. O., Lucas, W. J. & Gilbertson, R. L. ( 1998; ). Bean dwarf mosaic geminivirus movement proteins recognize DNA in a form- and size-specific manner. Cell 95, 105–113.[CrossRef]
    [Google Scholar]
  50. Rojas, M. R., Hagen, C., Lucas, W. J. & Gilbertson, R. L. ( 2005; ). Exploiting chinks in the plant's armor: evolution and emergence of geminiviruses. Annu Rev Phytopathol 43, 361–394.[CrossRef]
    [Google Scholar]
  51. Rothenstein, D., Haible, D., Dasgupta, I., Dutt, N., Patil, B. L. & Jeske, H. ( 2006; ). Biodiversity and recombination of cassava-infecting begomoviruses from southern India. Arch Virol 151, 55–69.[CrossRef]
    [Google Scholar]
  52. Saunders, K., Salim, N., Mali, V. R., Malathi, V. G., Briddon, R., Markham, P. G. & Stanley, J. ( 2002; ). Characterisation of Sri Lankan cassava mosaic virus and Indian cassava mosaic virus: evidence for acquisition of a DNA B component by a monopartite begomovirus. Virology 293, 63–74.[CrossRef]
    [Google Scholar]
  53. Schaffer, R. L., Miller, C. G. & Petty, I. T. D. ( 1995; ). Virus and host-specific adaptations in the BL1 and BR1 genes of bipartite geminiviruses. Virology 214, 330–338.[CrossRef]
    [Google Scholar]
  54. Stanley, J., Bisaro, D. M., Briddon, R. W., Brown, J. K., Fauquet, C. M., Harrison, B. D., Rybicki, E. P. & Stenger, D. C. ( 2005; ). Family Geminiviridae. In Virus Taxonomy: Eighth Report of the International Committee on Taxonomy of Viruses, pp. 301–326. Edited by C. M. Fauquet, M. A. Mayo, J. Maniloff, U. Desselberger & L. A. Ball. San Diego: Elsevier Academic Press.
  55. Sung, Y. K. & Coutts, R. H. A. ( 1995; ). Pseudorecombination and complementation between potato yellow mosaic geminivirus and tomato golden mosaic geminivirus. J Gen Virol 76, 2809–2815.[CrossRef]
    [Google Scholar]
  56. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  57. Unseld, S., Ringel, M., Höfer, P., Höhnle, M., Jeske, H., Bedford, I. D., Markham, P. G. & Frischmuth, T. ( 2000; ). Host range and symptom variation of pseudorecombinant virus produced by two distinct bipartite geminiviruses. Arch Virol 145, 1449–1454.[CrossRef]
    [Google Scholar]
  58. Were, H. K., Winter, S. & Maiss, E. ( 2004; ). Viruses infecting cassava in Kenya. Plant Dis 88, 17–22.[CrossRef]
    [Google Scholar]
  59. Zerbini, F. M., Fernandes, J. J., Fontes, E. P. B., Brommonschenkel, S. H. & Carvalho, M. G. ( 2002; ). Association of the DNA components of Tomato rugose mosaic virus (ToRMV) with distinct geminivirus DNA components in Nicandra physaloides and Phaseolus vulgaris. In XII International Congress of Virology (Abstracts), p. 147. Paris: International Union of Microbiological Societies.
  60. Zhou, X., Liu, Y., Calvert, L., Munoz, C., Otim-Nape, G. W., Robinson, D. J. & Harrison, B. D. ( 1997; ). Evidence that DNA-A of a geminivirus associated with severe cassava mosaic disease in Uganda has arisen by interspecific recombination. J Gen Virol 78, 2101–2111.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82279-0
Loading
/content/journal/jgv/10.1099/vir.0.82279-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error