1887

Abstract

RNA silencing is a natural antiviral defence in plants, which can be exploited in transgenic plants for preprogramming virus recognition and ensuring enhanced resistance. By arranging viral transgenes as inverted repeats it is thus possible to obtain strong repression of incoming viruses. Due to the high sequence specificity of RNA silencing, this technology has hitherto been limited to the targeting of single viruses. Here it is shown that efficient simultaneous targeting of four different tospoviruses can be achieved by using a single small transgene based on the production of minimal sized chimaeric cassettes. Due to simultaneous RNA silencing, as demonstrated by specific siRNA accumulation, the transgenic expression of these cassettes rendered up to 82 % of the transformed plant lines heritably resistant against all four viruses. Thus RNA silencing can be further improved for high frequency multiple virus resistance by combining small RNA fragments from a series of target viruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82276-0
2006-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/12/3697.html?itemId=/content/journal/jgv/10.1099/vir.0.82276-0&mimeType=html&fmt=ahah

References

  1. Beclin C., Boutet S., Waterhouse P., Vaucheret H. 2002; A branched pathway for transgene-induced RNA silencing in plants. Curr Biol 12:684–688 [CrossRef]
    [Google Scholar]
  2. Bucher E., Hemmes H., De Haan P., Goldbach R., Prins M. 2004; The influenza A virus NS1 protein binds small interfering RNAs and suppresses RNA silencing in plants. J Gen Virol 85:983–991 [CrossRef]
    [Google Scholar]
  3. Chen Y. K., Lohuis D., Goldbach R., Prins M. 2004; High frequency induction of RNA-mediated resistance against cucumber mosaic virus using inverted repeat constructs. Mol Breed 14:215–226 [CrossRef]
    [Google Scholar]
  4. de Ávila A. C., de Haan P., Smeets M. L. L., Resende, Rde O., Kormelink R., Kitajima E.-W., Goldbach R. W., Peters D. 1992; Distinct levels of relationships between tospovirus isolates. Arch Virol 128:211–227
    [Google Scholar]
  5. de Ávila A. C., de Haan P., Kormelink R., Resende R. de O., Goldbach R. W., Peters D. 1993; Classification of tospoviruses based on phylogeny of nucleoprotein gene sequences. J Gen Virol 74:153–159 [CrossRef]
    [Google Scholar]
  6. De Haan P., Gielen J. J. L., Prins M., Wijkamp I. G., Van Schepen A., Peters D., Van Grinsven M. Q. J. M., Goldbach R. 1992; Characterization of RNA-mediated resistance to tomato spotted wilt virus in transgenic tobacco plants. Biotechnology (N Y) 10:1133–1137 [CrossRef]
    [Google Scholar]
  7. Hamilton A. J., Baulcombe D. C. 1999; A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950–952 [CrossRef]
    [Google Scholar]
  8. Heinze C., Maiss E., Adam G., Casper R. 1995; The complete nucleotide sequence of the S RNA of a new tospovirus species, representing serogroup IV. Phytopathology 85:683–690 [CrossRef]
    [Google Scholar]
  9. Horsch R. B., Fry J. E., Hoffmann N. L., Eichholtz D., Rogers S. G., Fraley R. T. 1985; A simple method for transferring genes into plants. Science 227:1229–1231 [CrossRef]
    [Google Scholar]
  10. Inoue-Nagata A., Kormelink R., Nagata T., Kitajima E.-W., Goldbach R., Peters D. 1997; Temperature and host effects on the generation of tomato spotted wilt virus defective interfering RNAs. Phytopathology 87:1168–1173 [CrossRef]
    [Google Scholar]
  11. Jan F.-J., Fagoaga C., Pang S.-Z., Gonsalves D. 2000; A minimum length of N gene sequence in transgenic plants is required for RNA-mediated tospovirus resistance. J Gen Virol 81:235–242
    [Google Scholar]
  12. Kalantidis K., Psaradakis S., Tabler M., Tsagris M. 2002; The occurrence of CMV-specific short RNAs in transgenic tobacco expressing virus-derived double-stranded RNA is indicative of resistance to the virus. Mol Plant Microbe Interact 15:826–833 [CrossRef]
    [Google Scholar]
  13. Pang S. Z., Jan F. J., Gonsalves D. 1997; Nontarget DNA sequences reduce the transgene length necessary for RNA-mediated tospovirus resistance in transgenic plants. Proc Natl Acad Sci U S A 94:8261–8266 [CrossRef]
    [Google Scholar]
  14. Prins M., Goldbach R. 1998; The emerging problem of tospovirus infection and nonconventional methods of control. Trends Microbiol 6:31–35 [CrossRef]
    [Google Scholar]
  15. Prins M., Resende R. de O., Anker C., Van Schepen A., De Haan P., Goldbach R. 1996; Engineered RNA-mediated resistance to tomato spotted wilt virus is sequence specific. Mol Plant Microbe Interact 9:416–418 [CrossRef]
    [Google Scholar]
  16. Smith N. A., Singh S. P., Wang M. B., Stoutjesdijk P. A., Green A. G., Waterhouse P. M. 2000; Total silencing by intron-spliced hairpin RNAs. Nature 407:319–320 [CrossRef]
    [Google Scholar]
  17. Tenllado F., Llave C., Diaz-Ruiz J. R. 2004; RNA interference as a new biotechnological tool for the control of virus diseases in plants. Virus Res 102:85–96 [CrossRef]
    [Google Scholar]
  18. Waterhouse P. M., Helliwell C. A. 2003; Exploring plant genomes by RNA-induced gene silencing. Nat Rev Genet 4:29–38 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82276-0
Loading
/content/journal/jgv/10.1099/vir.0.82276-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error