1887

Abstract

The yellow fever virus attenuated 17D vaccine strain is a safe and effective vaccine and a valuable model system for evaluating immune responses against attenuated viral variants. This study compared the interactions of the commercially available yellow fever vaccine (YF-VAX), and the live-attenuated dengue vaccine PDK50 with dendritic cells (DCs), the main antigen-presenting cells at the initiation of immune responses. Similar to PDK50, infection with YF-VAX generated activated DCs; however, for YF-VAX, activation occurred with limited intracellular virus replication. The majority of internalized virus co-localized with endolysosomal markers within 90 min, suggesting that YF-VAX is processed rapidly in DCs. These results indicate that restricted virus replication and lysosomal compartmentalization may be important contributing factors to the success of the YF-VAX vaccine.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82272-0
2007-01-01
2020-01-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/1/148.html?itemId=/content/journal/jgv/10.1099/vir.0.82272-0&mimeType=html&fmt=ahah

References

  1. Alvarez, C. P., Lasala, F., Carrillo, J., Muñiz, O., Corbi, A. L. & Delgado, R. ( 2002; ). C-type lectins DC-SIGN and L-SIGN mediate cellular entry by Ebola virus in cis and in trans. J Virol 76, 6841–6844.[CrossRef]
    [Google Scholar]
  2. Barba-Spaeth, G., Longman, R. S., Albert, M. L. & Rice, C. M. ( 2005; ). Live attenuated yellow fever 17D infects human DCs and allows for presentation of endogenous and recombinant T cell epitopes. J Exp Med 202, 1179–1184.[CrossRef]
    [Google Scholar]
  3. Barros, V. E. D., Thomazini, J. A. & Figueiredo, L. T. M. ( 2004; ). Cytopathological changes induced by selected Brazilian flaviviruses in mouse macrophages. J Microsc 216, 5–14.[CrossRef]
    [Google Scholar]
  4. Brandler, S., Brown, N., Ermak, T. H., Mitchell, F., Parsons, M., Zhang, Z., Lang, J., Monath, T. P. & Guirakhoo, F. ( 2005; ). Replication of chimeric yellow fever virus-dengue serotype 1-4 virus vaccine strains in dendritic and hepatic cells. Am J Trop Med Hyg 72, 74–81.
    [Google Scholar]
  5. Brandriss, M. W., Schlesinger, J. J. & Walsh, E. E. ( 1990; ). Immunogenicity of a purified fragment of 17D yellow fever envelope protein. J Infect Dis 161, 1134–1139.[CrossRef]
    [Google Scholar]
  6. Catteau, A., Kalinina, O., Wagner, M.-C., Deubel, V., Courageot, M.-P. & Desprès, P. ( 2003; ). Dengue virus M protein contains a proapoptotic sequence referred to as ApoptoM. J Gen Virol 84, 2781–2793.[CrossRef]
    [Google Scholar]
  7. Chu, P. W. G. & Westaway, E. G. ( 1985; ). Replication strategy of Kunjin virus: evidence for recycling role of replicative form RNA as template in semiconservative and asymmetric replication. Virology 140, 68–79.[CrossRef]
    [Google Scholar]
  8. Co, M. D. T., Terajima, M., Cruz, J., Ennis, F. A. & Rothman, A. L. ( 2002; ). Human cytotoxic T lymphocyte responses to live attenuated 17D yellow fever vaccine: identification of HLA-B35-restricted CTL epitopes on nonstructural proteins NS1, NS2b, NS3, and the structural protein E. Virology 293, 151–163.[CrossRef]
    [Google Scholar]
  9. Desprès, P., Flamand, M., Ceccaldi, P.-E. & Deubel, V. ( 1996; ). Human isolates of dengue type 1 virus induce apoptosis in mouse neuroblastoma cells. J Virol 70, 4090–4096.
    [Google Scholar]
  10. Diaz, M. O., Ziemin, S., Le Beau, M. M., Pitha, P., Smith, S. D., Chilcote, R. R. & Rowley, J. D. ( 1988; ). Homozygous deletion of the α- and β 1-interferon genes in human leukemia and derived cell lines. Proc Natl Acad Sci U S A 85, 5259–5263.[CrossRef]
    [Google Scholar]
  11. Fox, J. P., Lennette, E. H., Manso, C. & Souza, J. R. ( 1942; ). Encephalitis in man following vaccination with 17 D yellow fever virus. Am J Hyg 36, 117–142.
    [Google Scholar]
  12. Gardner, J. P., Durso, R. J., Arrigale, R. R., Donovan, G. P., Maddon, P. J., Dragic, T. & Olson, W. C. ( 2003; ). L-SIGN (CD 209L) is a liver-specific capture receptor for hepatitis C virus. Proc Natl Acad Sci U S A 100, 4498–4503.[CrossRef]
    [Google Scholar]
  13. Groot, H. & Riberiro, R. B. ( 1962; ). Neutralizing and haemagglutination-inhibiting antibodies to yellow fever 17 years after vaccination with 17D vaccine. Bull World Health Organ 27, 699–707.
    [Google Scholar]
  14. Gruenberg, J. ( 2001; ). The endocytic pathway: a mosaic of domains. Nat Rev Mol Cell Biol 2, 721–730.[CrossRef]
    [Google Scholar]
  15. Gubler, D. J. ( 2004; ). Cities spawn epidemic dengue viruses. Nat Med 10, 129–130.[CrossRef]
    [Google Scholar]
  16. Hahn, C. S., Hahn, Y. S., Rice, C. M., Lee, E., Dalgarno, L., Strauss, E. G. & Strauss, J. H. ( 1987; ). Conserved elements in the 3′ untranslated region of flavivirus RNAs and potential cyclization sequences. J Mol Biol 198, 33–41.[CrossRef]
    [Google Scholar]
  17. Halary, F., Amara, A., Lortat-Jacob, H., Messerle, M., Delaunay, T., Houles, C., Fieschi, F., Arenzana-Seisdedos, F., Moreau, J. F. & Dechanet-Merville, J. ( 2002; ). Human cytomegalovirus binding to DC-SIGN is required for dendritic cell infection and target cell trans-infection. Immunity 17, 653–664.[CrossRef]
    [Google Scholar]
  18. Kroeger, A., Nathan, M., Hombach, J. & the World Health Organization TDR Reference Group on Dengue ( 2004; ). Dengue. Nat Rev Microbiol 2, 360–361.
    [Google Scholar]
  19. Kuno, G., Chang, G.-J. J., Tsuchiya, K. R., Karabatsos, N. & Cropp, C. B. ( 1998; ). Phylogeny of the genus Flavivirus. J Virol 72, 73–83.
    [Google Scholar]
  20. Lakadamyali, M., Rust, M. J., Babcock, H. P. & Zhuang, X. ( 2003; ). Visualizing infection of individual influenza viruses. Proc Natl Acad Sci U S A 100, 9280–9285.[CrossRef]
    [Google Scholar]
  21. Lambeth, C. R., White, L. J., Johnston, R. E. & de Silva, A. M. ( 2005; ). Flow cytometry-based assay for titrating dengue virus. J Clin Microbiol 43, 3267–3272.[CrossRef]
    [Google Scholar]
  22. Lee, E. & Lobigs, M. ( 2002; ). Mechanism of virulence attenuation of glycosaminoglycan-binding variants of Japanese encephalitis virus and Murray Valley encephalitis virus. J Virol 76, 4901–4911.[CrossRef]
    [Google Scholar]
  23. Liprandi, F. & Walder, R. ( 1983; ). Replication of virulent and attenuated strains of yellow fever virus in human monocytes and macrophage-like cells (U937). Arch Virol 76, 51–61.[CrossRef]
    [Google Scholar]
  24. Marianneau, P., Desprès, P. & Deubel, V. ( 1999a; ). Recent knowledge on the pathogenesis of yellow fever and questions for the future. Bull Soc Pathol Exot 92, 432–434 (in French).
    [Google Scholar]
  25. Marianneau, P., Steffan, A.-M., Royer, C., Drouet, M.-T., Jaeck, D., Kirn, A. & Deubel, V. ( 1999b; ). Infection of primary cultures of human Kupffer cells by dengue virus: no viral progeny synthesis, but cytokine production is evident. J Virol 73, 5201–5206.
    [Google Scholar]
  26. Mathew, A., Kurane, I., Green, S., Vaughn, D. W., Kalayanarooj, S., Suntayakorn, S., Ennis, F. A. & Rothman, A. L. ( 1999; ). Impaired T cell proliferation in acute dengue infection. J Immunol 162, 5609–5615.
    [Google Scholar]
  27. Navarro-Sanchez, E., Altmeyer, R., Amara, A., Schwartz, O., Fieschi, F., Virelizier, J.-L., Arenzana-Seisdedos, F. & Desprès, P. ( 2003; ). Dendritic-cell-specific ICAM3-grabbing non-integrin is essential for the productive infection of human dendritic cells by mosquito-cell-derived dengue viruses. EMBO Rep 4, 723–728.[CrossRef]
    [Google Scholar]
  28. Palmer, D. R., Sun, P., Celluzzi, C., Bisbing, J., Pang, S., Sun, W., Marovich, M. A. & Burgess, T. ( 2005; ). Differential effects of dengue virus on infected and bystander dendritic cells. J Virol 79, 2432–2439.[CrossRef]
    [Google Scholar]
  29. Poland, J. D., Calisher, C. H., Monath, T. P., Downs, W. G. & Murphy, K. ( 1981; ). Persistence of neutralizing antibody 30–35 years after immunization with 17D yellow fever vaccine. Bull World Health Organ 59, 895–900.
    [Google Scholar]
  30. Putnak, J. R. & Schlesinger, J. J. ( 1990; ). Protection of mice against yellow fever virus encephalitis by immunization with a vaccinia virus recombinant encoding the yellow fever virus non-structural proteins, NS1, NS2a and NS2b. J Gen Virol 71, 1697–1702.[CrossRef]
    [Google Scholar]
  31. Quaresma, J. A. S., Barros, V. L. R. S., Fernandes, E. R., Pagliari, C., Takakura, C., da Costa Vasconcelos, P. F., de Andrade, H. F., Jr & Duarte, M. I. S. ( 2005; ). Reconsideration of histopathology and ultrastructural aspects of the human liver in yellow fever. Acta Trop 94, 116–127.[CrossRef]
    [Google Scholar]
  32. Querec, T., Bennouna, S., Alkan, S., Laouar, Y., Gorden, K., Flavell, R., Akira, S., Ahmed, R. & Pulendran, B. ( 2006; ). Yellow fever vaccine YF-17D activates multiple dendritic cell subsets via TLR2, 7, 8, and 9 to stimulate polyvalent immunity. J Exp Med 203, 413–424.[CrossRef]
    [Google Scholar]
  33. Rao, M., Rothwell, S. W., Wassef, N. M., Pagano, R. E. & Alving, C. R. ( 1997; ). Visualization of peptides derived from liposome-encapsulated proteins in the trans-Golgi area of macrophages. Immunol Lett 59, 99–105.[CrossRef]
    [Google Scholar]
  34. Reinhardt, B., Jaspert, R., Niedrig, M., Kostner, C. & L'age-Stehr, J. ( 1998; ). Development of viremia and humoral and cellular parameters of immune activation after vaccination with yellow fever virus strain 17D: a model of human flavivirus infection. J Med Virol 56, 159–167.[CrossRef]
    [Google Scholar]
  35. Schlesinger, J. J., Brandriss, M. W., Cropp, C. B. & Monath, T. P. ( 1986; ). Protection against yellow fever in monkeys by immunization with yellow fever virus nonstructural protein NS1. J Virol 60, 1153–1155.
    [Google Scholar]
  36. Tassaneetrithep, B., Burgess, T. H., Granelli-Piperno, A., Trumpfheller, C., Finke, J., Sun, W., Eller, M. A., Pattanapanyasat, K., Sarasombath, S. & other authors ( 2003; ). DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J Exp Med 197, 823–829.[CrossRef]
    [Google Scholar]
  37. Theiler, M. & Smith, H. H. ( 1937; ). The use of yellow fever virus by in vitro cultivation for human immunization. J Exp Med 65, 787–800.[CrossRef]
    [Google Scholar]
  38. Uchil, P. D. & Satchidanandam, V. ( 2003; ). Characterization of RNA synthesis, replication mechanism, and in vitro RNA-dependent RNA polymerase activity of Japanese encephalitis virus. Virology 307, 358–371.[CrossRef]
    [Google Scholar]
  39. van Kooyk, Y. & Geijtenbeek, T. B. ( 2003; ). DC-SIGN: escape mechanism for pathogens. Nat Rev Immunol 3, 697–709.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82272-0
Loading
/content/journal/jgv/10.1099/vir.0.82272-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error