1887

Abstract

The positive-stranded RNA genome of the arterivirus (order ) encodes the partially overlapping replicase polyproteins pp1a (1727 aa) and pp1ab (3175 aa). Previously, three viral proteinases were reported to cleave these large polyproteins into 12 non-structural proteins (nsps). The chymotrypsin-like viral main proteinase residing in nsp4 is responsible for eight of these cleavages. Processing of the C-terminal half of pp1a (the nsp3–8 region) was postulated to occur following either of two alternative proteolytic pathways (the ‘major’ and ‘minor’ pathways). Here, the importance of these two pathways was investigated by using a reverse-genetics system and inactivating each of the cleavage sites by site-directed mutagenesis. For all of these pp1a cleavage sites, mutations that prevented cleavage by the nsp4 proteinase were found to block or severely inhibit EAV RNA synthesis. Furthermore, our studies identified a novel nsp4 cleavage site (Glu-1575/Ala-1576) that is located within nsp7 and is conserved in arteriviruses. The N-terminal nsp7 fragment (nsp7) derived from this cleavage was detected in lysates of both EAV-infected cells and cells transiently expressing pp1a. Mutagenesis of the novel cleavage site in the context of an EAV full-length cDNA clone proved to be lethal, underlining the fact that the highly regulated, nsp4-mediated processing of the C-terminal half of pp1a is a crucial event in the arterivirus life cycle.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82269-0
2006-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/12/3473.html?itemId=/content/journal/jgv/10.1099/vir.0.82269-0&mimeType=html&fmt=ahah

References

  1. Anand K., Palm G. J., Mesters J. R., Siddell S. G., Ziebuhr J., Hilgenfeld R. 2002; Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra α -helical domain. EMBO J 21:3213–3224 [CrossRef]
    [Google Scholar]
  2. Barrette-Ng I. H., Ng K. K.-S., Mark B. L., van Aken D., Cherney M. M., Garen C., Kolodenko Y., Gorbalenya A. E., Snijder E. J., James M. N. G. 2002; Structure of arterivirus nsp4: the smallest chymotrypsin-like proteinase with an α / β C-terminal extension and alternate conformations of the oxyanion hole. J Biol Chem 277:39960–39966 [CrossRef]
    [Google Scholar]
  3. Bartenschlager R., Ahlborn-Laake L., Mous J., Jacobsen H. 1994; Kinetic and structural analyses of hepatitis C virus polyprotein processing. J Virol 68:5045–5055
    [Google Scholar]
  4. Bost A. G., Carnahan R. H., Lu X. T., Denison M. R. 2000; Four proteins processed from the replicase gene polyprotein of mouse hepatitis virus colocalize in the cell periphery and adjacent to sites of virion assembly. J Virol 74:3379–3387 [CrossRef]
    [Google Scholar]
  5. den Boon J. A., Snijder E. J., Chirnside E. D., de Vries A. A. F., Horzinek M. C., Spaan W. J. M. 1991; Equine arteritis virus is not a togavirus but belongs to the coronaviruslike superfamily. J Virol 65:2910–2920
    [Google Scholar]
  6. Denison M. R., Yount B., Brockway S. M., Graham R. L., Sims A. C., Lu X., Baric R. S. 2004; Cleavage between replicase proteins p28 and p65 of mouse hepatitis virus is not required for virus replication. J Virol 78:5957–5965 [CrossRef]
    [Google Scholar]
  7. de Vries A. A. F., Chirnside E. D., Horzinek M. C., Rottier P. J. M. 1992; Structural proteins of equine arteritis virus. J Virol 66:6294–6303
    [Google Scholar]
  8. Ding M., Schlesinger M. J. 1989; Evidence that Sindbis virus NSP2 is an autoprotease which processes the virus nonstructural polyprotein. Virology 171:280–284 [CrossRef]
    [Google Scholar]
  9. Doll E. R., Bryans J. T., McCollum W. H., Wallace M. E. 1957; Isolation of a filterable agent causing arteritis of horses and abortion by mares: its differentiation from the equine abortion (influenza) virus. Cornell Vet 47:3–41
    [Google Scholar]
  10. Edgar R. C. 2004; muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797 [CrossRef]
    [Google Scholar]
  11. Egloff M.-P., Ferron F., Campanacci V., Longhi S., Rancurel C., Dutartre H., Snijder E. J., Gorbalenya A. E., Cambillau C., Canard B. 2004; The severe acute respiratory syndrome-coronavirus replicative protein nsp9 is a single-stranded RNA-binding subunit unique in the RNA virus world. Proc Natl Acad Sci U S A 101:3792–3796 [CrossRef]
    [Google Scholar]
  12. Fuerst T. R., Niles E. G., Studier F. W., Moss B. 1986; Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc Natl Acad Sci U S A 83:8122–8126 [CrossRef]
    [Google Scholar]
  13. Godeny E. K., Chen L., Kumar S. N., Methven S. L., Koonin E. V., Brinton M. A. 1993; Complete genomic sequence and phylogenetic analysis of the lactate dehydrogenase-elevating virus (LDV). Virology 194:585–596 [CrossRef]
    [Google Scholar]
  14. Gorbalenya A. E., Snijder E. J. 1996; Viral cysteine proteases. Perspect Drug Discov Des 6:64–86 [CrossRef]
    [Google Scholar]
  15. Gorbalenya A. E., Enjuanes L., Ziebuhr J., Snijder E. J. 2006; Nidovirales : evolving the largest RNA virus genome. Virus Res 117:17–37 [CrossRef]
    [Google Scholar]
  16. Hardy M. E., Crone T. J., Brower J. E., Ettayebi K. 2002; Substrate specificity of the Norwalk virus 3C-like proteinase. Virus Res 89:29–39 [CrossRef]
    [Google Scholar]
  17. Jore J., De Geus B., Jackson R. J., Pouwels P. H., Enger-Valk B. E. 1988; Poliovirus protein 3CD is the active protease for processing of the precursor protein P1 in vitro . J Gen Virol 69:1627–1636 [CrossRef]
    [Google Scholar]
  18. Kim J. C., Spence R. A., Currier P. F., Lu X., Denison M. R. 1995; Coronavirus protein processing and RNA synthesis is inhibited by the cysteine proteinase inhibitor E64d. Virology 208:1–8 [CrossRef]
    [Google Scholar]
  19. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  20. Landt O., Grunert H.-P., Hahn U. 1990; A general method for rapid site-directed mutagenesis using the polymerase chain reaction. Gene 96:125–128 [CrossRef]
    [Google Scholar]
  21. Ropp S. L., Wees C. E. M., Fang Y. & 10 other authors 2004; Characterization of emerging European-like porcine reproductive and respiratory syndrome virus isolates in the United States. J Virol 78:3684–3703 [CrossRef]
    [Google Scholar]
  22. Rosé J. R., Babé L. M., Craik C. S. 1995; Defining the level of human immunodeficiency virus type 1 (HIV-1) protease activity required for HIV-1 particle maturation and infectivity. J Virol 69:2751–2758
    [Google Scholar]
  23. Ryan M. D., Flint M. 1997; Virus-encoded proteinases of the picornavirus super-group. J Gen Virol 78:699–723
    [Google Scholar]
  24. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  25. Sawicki S. G., Sawicki D. L., Younker D., Meyer Y., Thiel V., Stokes H., Siddell S. G. 2005; Functional and genetic analysis of coronavirus replicase-transcriptase proteins. PLoS Pathog 1:e39 [CrossRef]
    [Google Scholar]
  26. Schechter I., Berger A. 1967; On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun 27:157–162 [CrossRef]
    [Google Scholar]
  27. Shen S., Kwang J., Liu W., Liu D. X. 2000; Determination of the complete nucleotide sequence of a vaccine strain of porcine reproductive and respiratory syndrome virus and identification of the Nsp2 gene with a unique insertion. Arch Virol 145:871–883 [CrossRef]
    [Google Scholar]
  28. Siddell S. G., Ziebuhr J., Snijder E. J. 2005; Coronaviruses, toroviruses and arteriviruses. In Topley and Wilson's Microbiology and Microbial Infections , 10th edn. Virology volume pp  823–856 Edited by Mahy B. W., ter Meulen V. London: Hodder Arnold;
    [Google Scholar]
  29. Smits S. L., Snijder E. J., de Groot R. J. 2006; Characterization of a torovirus main proteinase. J Virol 80:4157–4167 [CrossRef]
    [Google Scholar]
  30. Snijder E. J., Meulenberg J. J. M. 1998; The molecular biology of arteriviruses. J Gen Virol 79:961–979
    [Google Scholar]
  31. Snijder E. J., Meulenberg J. J. M. 2001; Arteriviruses. In Fields Virology , 4th edn. pp  1205–1220 Edited by Knipe D. M., Howley P. M. Philadelphia, PA: Lippincott Williams & Wilkins;
    [Google Scholar]
  32. Snijder E. J., Wassenaar A. L. M., Spaan W. J. M. 1994; Proteolytic processing of the replicase ORF1a protein of equine arteritis virus. J Virol 68:5755–5764
    [Google Scholar]
  33. Snijder E. J., Wassenaar A. L. M., van Dinten L. C., Spaan W. J. M., Gorbalenya A. E. 1996; The arterivirus nsp4 protease is the prototype of a novel group of chymotrypsin-like enzymes, the 3C-like serine proteases. J Biol Chem 271:4864–4871 [CrossRef]
    [Google Scholar]
  34. Snijder E. J., Dobbe J. C., Spaan W. J. M. 2003; Heterodimerization of the two major envelope proteins is essential for arterivirus infectivity. J Virol 77:97–104 [CrossRef]
    [Google Scholar]
  35. Snijder E. J., Brinton M. A., Faaberg K. S., Godeny E. K., Gorbalenya A. E., MacLachlan N. J., Mengeling W. L., Plagemann P. G. W. 2005; Family Arteriviridae . In Virus Taxonomy: Eighth Report of the International Committee on Taxonomy of Viruses pp  965–974 Edited by Fauqet C. M., Mayo M. A., Maniloff J., Desselberger U., Ball L. A. London: Elsevier/Academic Press;
    [Google Scholar]
  36. Snijder E. J., van der Meer Y., Zevenhoven-Dobbe J., Onderwater J. J. M., van der Meulen J., Koerten H. K., Mommaas A. M. 2006; Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex. J Virol 80:5927–5940 [CrossRef]
    [Google Scholar]
  37. Spaan W. J. M., Cavanagh D., de Groot R. J., Enjuanes L., Gorbalenya A. E., Snijder E. J., Walker P. J. 2005; Order Nidovirales . In Virus Taxonomy: Eighth Report of the International Committee on Taxonomy of Viruses pp  937–945 Edited by Fauqet C. M., Mayo M. A., Maniloff J., Desselberger U., Ball L. A. London: Elsevier/Academic Press;
    [Google Scholar]
  38. Sutton G., Fry E., Carter L. & 14 other authors 2004; The nsp9 replicase protein of SARS-coronavirus, structure and functional insights. Structure 12:341–353 [CrossRef]
    [Google Scholar]
  39. Tijms M. A., van Dinten L. C., Gorbalenya A. E., Snijder E. J. 2001; A zinc finger-containing papain-like protease couples subgenomic mRNA synthesis to genome translation in a positive-stranded RNA virus. Proc Natl Acad Sci U S A 98:1889–1894 [CrossRef]
    [Google Scholar]
  40. van Aken D., Benckhuijsen W. E., Drijfhout J. W., Wassenaar A. L. M., Gorbalenya A. E., Snijder E. J. 2006a; Expression, purification, and in vitro activity of an arterivirus main proteinase. Virus Res 120:97–106 [CrossRef]
    [Google Scholar]
  41. van Aken D., Snijder E. J., Gorbalenya A. E. 2006b; Mutagenesis analysis of the nsp4 main proteinase reveals determinants of arterivirus replicase polyprotein autoprocessing. J Virol 80:3428–3437 [CrossRef]
    [Google Scholar]
  42. van der Meer Y., van Tol H., Locker J. K., Snijder E. J. 1998; ORF1a-encoded replicase subunits are involved in the membrane association of the arterivirus replication complex. J Virol 72:6689–6698
    [Google Scholar]
  43. van Dinten L. C., Wassenaar A. L. M., Gorbalenya A. E., Spaan W. J. M., Snijder E. J. 1996; Processing of the equine arteritis virus replicase ORF1b protein: identification of cleavage products containing the putative viral polymerase and helicase domains. J Virol 70:6625–6633
    [Google Scholar]
  44. van Dinten L. C., den Boon J. A., Wassenaar A. L. M., Spaan W. J. M., Snijder E. J. 1997; An infectious arterivirus cDNA clone: identification of a replicase point mutation that abolishes discontinuous mRNA transcription. Proc Natl Acad Sci U S A 94:991–996 [CrossRef]
    [Google Scholar]
  45. van Dinten L. C., Rensen S., Gorbalenya A. E., Snijder E. J. 1999; Proteolytic processing of the open reading frame 1b-encoded part of arterivirus replicase is mediated by nsp4 serine protease and is essential for virus replication. J Virol 73:2027–2037
    [Google Scholar]
  46. Wassenaar A. L. M., Spaan W. J. M., Gorbalenya A. E., Snijder E. J. 1997; Alternative proteolytic processing of the arterivirus replicase ORF1a polyprotein: evidence that NSP2 acts as a cofactor for the NSP4 serine protease. J Virol 71:9313–9322
    [Google Scholar]
  47. Yang H., Yang M., Ding Y., Liu Y., Lou Z., Zhou Z., Sun L., Mo L., Ye S. other authors 2003; The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor. Proc Natl Acad Sci U S A 100:13190–13195 [CrossRef]
    [Google Scholar]
  48. Yang H., Xie W., Xue X. & 16 other authors 2005; Design of wide-spectrum inhibitors targeting coronavirus main proteases. PLoS Biol 3:e324 [CrossRef]
    [Google Scholar]
  49. Ypma-Wong M. F., Dewalt P. G., Johnson V. H., Lamb J. G., Semler B. L. 1988; Protein 3CD is the major poliovirus proteinase responsible for cleavage of the P1 capsid precursor. Virology 166:265–270 [CrossRef]
    [Google Scholar]
  50. Zeng L., Godeny E. K., Methven S. L., Brinton M. A. 1995; Analysis of simian hemorrhagic fever virus (SHFV) subgenomic RNAs, junction sequences, and 5′ leader. Virology 207:543–548 [CrossRef]
    [Google Scholar]
  51. Zhai Y., Sun F., Li X., Pang H., Xu X., Bartlam M., Rao Z. 2005; Insights into SARS-CoV transcription and replication from the structure of the nsp7–nsp8 hexadecamer. Nat Struct Mol Biol 12:980–986 [CrossRef]
    [Google Scholar]
  52. Ziebuhr J., Snijder E. J., Gorbalenya A. E. 2000; Virus-encoded proteinases and proteolytic processing in the Nidovirales . J Gen Virol 81:853–879
    [Google Scholar]
  53. Ziebuhr J., Bayer S., Cowley J. A., Gorbalenya A. E. 2003; The 3C-like proteinase of an invertebrate nidovirus links coronavirus and potyvirus homologs. J Virol 77:1415–1426 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82269-0
Loading
/content/journal/jgv/10.1099/vir.0.82269-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error