1887

Abstract

Type I interferons (IFNs) are essential components of the innate immune system. This study characterized the distinct IFN sensitivities of two closely related Semliki Forest virus (SFV) strains in cell culture. The virulent L10 strain was derived from the original virus isolate by propagation in mice. In contrast, the avirulent SFV strain, designated V42, was derived from an earlier passage of the original virus isolated from mosquitoes. The virulent L10 strain produced a cytopathic effect (CPE) in IFN-treated cells and the production of infectious virus was only two orders of magnitude lower compared with untreated cells. In contrast, the avirulent V42 exerted no CPE in IFN-treated cells and production of infectious virus was four orders of magnitude lower compared with untreated cells. The reduced CPE in IFN-treated cells infected with the avirulent V42 strain was due to inhibition of productive infection and not to reduced cell death. The virulent L10 strain synthesized less genomic RNA but more non-structural proteins than the avirulent V42 strain, suggesting more efficient translation of the L10 genomic RNA. Using a cell line unable to produce IFN, it was shown that the reduced susceptibility of the L10 strain to the action of IFN was not due to reduced IFN induction. Hence, the reduced susceptibility of the virulent L10 strain to the action of IFN allows it to overcome the established IFN-induced antiviral state of the cell, thereby increasing its virulence.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82264-0
2007-07-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/7/1952.html?itemId=/content/journal/jgv/10.1099/vir.0.82264-0&mimeType=html&fmt=ahah

References

  1. Berlanga, J. J., Ventoso, I., Harding, H. P., Deng, J., Ron, D., Sonenberg, N., Carrasco, L. & de Haro, C. ( 2006; ). Antiviral effect of the mammalian translation initiation factor 2α kinase GCN2 against RNA viruses. EMBO J 25, 1730–1740.[CrossRef]
    [Google Scholar]
  2. Bick, M. J., Carroll, J. W., Gao, G., Goff, S. P., Rice, C. M. & MacDonald, M. R. ( 2003; ). Expression of the zinc-finger antiviral protein inhibits alphavirus replication. J Virol 77, 11555–11562.[CrossRef]
    [Google Scholar]
  3. Bradish, C. J., Allner, K. & Maber, H. B. ( 1971; ). The virulence of original and derived strains of Semliki forest virus for mice, guinea-pigs and rabbits. J Gen Virol 12, 141–160.[CrossRef]
    [Google Scholar]
  4. Emeny, J. M. & Morgan, M. J. ( 1979; ). Regulation of the interferon system: evidence that Vero cells have a genetic defect in interferon production. J Gen Virol 43, 247–252.[CrossRef]
    [Google Scholar]
  5. Fazakerley, J. K., Pathak, S., Scallan, M., Amor, S. & Dyson, H. ( 1993; ). Replication of the A7(74) strain of Semliki Forest virus is restricted in neurons. Virology 195, 627–637.[CrossRef]
    [Google Scholar]
  6. Fazakerley, J. K., Boyd, A., Mikkola, M. L. & Kaariainen, L. ( 2002; ). A single amino acid change in the nuclear localization sequence of the nsP2 protein affects the neurovirulence of Semliki Forest virus. J Virol 76, 392–396.[CrossRef]
    [Google Scholar]
  7. Frolov, I. & Schlesinger, S. ( 1994; ). Comparison of the effects of Sindbis virus and Sindbis virus replicons on host cell protein synthesis and cytopathogenicity in BHK cells. J Virol 68, 1721–1727.
    [Google Scholar]
  8. Frolov, I., Agapov, E., Hoffman, T. A., Jr, Pragai, B. M., Lippa, M., Schlesinger, S. & Rice, C. M. ( 1999; ). Selection of RNA replicons capable of persistent noncytopathic replication in mammalian cells. J Virol 73, 3854–3865.
    [Google Scholar]
  9. Glasgow, G. M., Killen, H. M., Liljestrom, P., Sheahan, B. J. & Atkins, G. J. ( 1994; ). A single amino acid change in the E2 spike protein of a virulent strain of Semliki Forest virus attenuates pathogenicity. J Gen Virol 75, 663–668.[CrossRef]
    [Google Scholar]
  10. Griffin, D. E. ( 2001; ). Alphaviruses. Fields Virology, 4th edn, pp. 917–962. Edited by P. M. Howley. Philadelphia, PA: Lippincott Williams and Wilkins.
  11. Hefti, H. P., Frese, M., Landis, H., Di Paolo, C., Aguzzi, A., Haller, O. & Pavlovic, J. ( 1999; ). Human MxA protein protects mice lacking a functional alpha/beta interferon system against La crosse virus and other lethal viral infections. J Virol 73, 6984–6991.
    [Google Scholar]
  12. Kawai, T. & Akira, S. ( 2006; ). Innate immune recognition of viral infection. Nat Immunol 7, 131–137.
    [Google Scholar]
  13. Kerr, I. M. & Brown, R. E. ( 1978; ). pppA2′p5′A2′p5′A: an inhibitor of protein synthesis synthesized with an enzyme fraction from interferon-treated cells. Proc Natl Acad Sci U S A 75, 256–260.[CrossRef]
    [Google Scholar]
  14. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  15. Landis, H., Simon-Jodicke, A., Kloti, A., Di Paolo, C., Schnorr, J. J., Schneider-Schaulies, S., Hefti, H. P. & Pavlovic, J. ( 1998; ). Human MxA protein confers resistance to Semliki Forest virus and inhibits the amplification of a Semliki Forest virus-based replicon in the absence of viral structural proteins. J Virol 72, 1516–1522.
    [Google Scholar]
  16. Mosmann, T. ( 1983; ). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65, 55–63.[CrossRef]
    [Google Scholar]
  17. Muller, U., Steinhoff, U., Reis, L. F., Hemmi, S., Pavlovic, J., Zinkernagel, R. M. & Aguet, M. ( 1994; ). Functional role of type I and type II interferons in antiviral defense. Science 264, 1918–1921.[CrossRef]
    [Google Scholar]
  18. Ronni, T., Melen, K., Malygin, A. & Julkunen, I. ( 1993; ). Control of IFN-inducible MxA gene expression in human cells. J Immunol 150, 1715–1726.
    [Google Scholar]
  19. Ryman, K. D., White, L. J., Johnston, R. E. & Klimstra, W. B. ( 2002; ). Effects of PKR/RNase L-dependent and alternative antiviral pathways on alphavirus replication and pathogenesis. Viral Immunol 15, 53–76.[CrossRef]
    [Google Scholar]
  20. Ryman, K. D., Meier, K. C., Nangle, E. M., Ragsdale, S. L., Korneeva, N. L., Rhoads, R. E., Macdonald, M. R. & Klimstra, W. B. ( 2005; ). Sindbis virus translation is inhibited by a PKR/RNase L-independent effector induced by alpha/beta interferon priming of dendritic cells. J Virol 79, 1487–1499.[CrossRef]
    [Google Scholar]
  21. Samuel, C. E. ( 2001; ). Antiviral actions of interferons. Clin Microbiol Rev 14, 778–809.[CrossRef]
    [Google Scholar]
  22. Santagati, M. G., Maatta, J. A., Itaranta, P. V., Salmi, A. A. & Hinkkanen, A. E. ( 1995; ). The Semliki Forest virus E2 gene as a virulence determinant. J Gen Virol 76, 47–52.[CrossRef]
    [Google Scholar]
  23. Schnorr, J. J., Schneider-Schaulies, S., Simon-Jodicke, A., Pavlovic, J., Horisberger, M. A. & ter Meulen, V. ( 1993; ). MxA-dependent inhibition of measles virus glycoprotein synthesis in a stably transfected human monocytic cell line. J Virol 67, 4760–4768.
    [Google Scholar]
  24. Smithburn, K. C. & Haddow, A. J. ( 1944; ). Semliki Forest virus. I. Isolation and pathogenic properties. J Immunol 49, 141–157.
    [Google Scholar]
  25. Strauss, J. H. & Strauss, E. G. ( 1994; ). The alphaviruses: gene expression, replication, and evolution. Microbiol Rev 58, 491–562.
    [Google Scholar]
  26. Tarbatt, C. J., Glasgow, G. M., Mooney, D. A., Sheahan, B. J. & Atkins, G. J. ( 1997; ). Sequence analysis of the avirulent, demyelinating A7 strain of Semliki Forest virus. J Gen Virol 78, 1551–1557.
    [Google Scholar]
  27. Tucker, P. C., Strauss, E. G., Kuhn, R. J., Strauss, J. H. & Griffin, D. E. ( 1993; ). Viral determinants of age-dependent virulence of Sindbis virus for mice. J Virol 67, 4605–4610.
    [Google Scholar]
  28. Tuittila, M. & Hinkkanen, A. E. ( 2003; ). Amino acid mutations in the replicase protein nsP3 of Semliki Forest virus cumulatively affect neurovirulence. J Gen Virol 84, 1525–1533.[CrossRef]
    [Google Scholar]
  29. Tuittila, M. T., Santagati, M. G., Roytta, M., Maatta, J. A. & Hinkkanen, A. E. ( 2000; ). Replicase complex genes of Semliki Forest virus confer lethal neurovirulence. J Virol 74, 4579–4589.[CrossRef]
    [Google Scholar]
  30. Weber, F., Kochs, G. & Haller, O. ( 2004; ). Inverse interference: how viruses fight the interferon system. Viral Immunol 17, 498–515.[CrossRef]
    [Google Scholar]
  31. Wengler, G. ( 1975; ). Protein synthesis in BHK-21 cells infected with Semliki forest virus. J Virol 17, 10–19.
    [Google Scholar]
  32. Wilcox, C. D., Dove, S. B., McDavid, W. D. & Greer, D. B. ( 2002; ). UTHSCSA imagetool. San Antonio, TX: Department of Dental Diagnostic Science at The University of Texas Health Science Center.
  33. Zhou, A., Paranjape, J. M., Der, S. D., Williams, B. R. & Silverman, R. H. ( 1999; ). Interferon action in triply deficient mice reveals the existence of alternative antiviral pathways. Virology 258, 435–440.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82264-0
Loading
/content/journal/jgv/10.1099/vir.0.82264-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error