Early herpes simplex virus type 1 infection is dependent on regulated Rac1/Cdc42 signalling in epithelial MDCKII cells Free

Abstract

The aim of this study was to understand how molecular determinants of epithelial cells influence initial infection by herpes simplex virus type 1 (HSV-1). Upon infection of the epithelial MDCKII cell line, enhanced association of virus particles with cells forming actin protrusions was observed, suggesting a putative role of actin dynamics in HSV-1 infection. Thus, the impact of the small Rho-like GTPases Rac1, Cdc42 and RhoA acting as key regulators of actin dynamics was addressed. Endogenous Rac1 and Cdc42 were temporarily activated at 15 and 30 min after HSV-1 infection. When constitutively active Cdc42 or Rac1 mutants were expressed transiently, a significant decrease in infectivity was observed, whereas expression of RhoA mutants had no influence. Furthermore, dominant-negative Cdc42 led to decreased infectivity, whereas dominant-negative Rac1 had no effect. So far, the study of potential effectors indicated that Rac1/Cdc42 mutants inhibited infectivity independently of p21-activated kinase (Pak1). The inhibitory effect of Rac1/Cdc42 mutant expression on HSV-1 infection was characterized further and it was found that binding, internalization and transport of HSV-1 were not affected by expression of Rac1/Cdc42 mutants. Thus, these results provide the first evidence for a role of Rac1/Cdc42 signalling during early HSV-1 infection and suggest a mechanism relying on virus-induced regulation of Rac1/Cdc42 activities.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82231-0
2006-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/12/3483.html?itemId=/content/journal/jgv/10.1099/vir.0.82231-0&mimeType=html&fmt=ahah

References

  1. Benard V., Bohl B. P., Bokoch G. M. 1999; Characterization of Rac and Cdc42 activation in chemoattractant-stimulated human neutrophils using a novel assay for active GTPases. J Biol Chem 274:13198–13204 [CrossRef]
    [Google Scholar]
  2. Bishop A. L., Hall A. 2000; Rho GTPases and their effector proteins. Biochem J 348:241–255 [CrossRef]
    [Google Scholar]
  3. Bokoch G. M. 2003; Biology of the p21-activated kinases. Annu Rev Biochem 72:743–781 [CrossRef]
    [Google Scholar]
  4. Campadelli-Fiume G., Cocchi F., Menotti L., Lopez M. 2000; The novel receptors that mediate the entry of herpes simplex viruses and animal alphaherpesviruses into cells. Rev Med Virol 10:305–319 [CrossRef]
    [Google Scholar]
  5. Desai P., Person S. 1998; Incorporation of the green fluorescent protein into the herpes simplex virus type 1 capsid. J Virol 72:7563–7568
    [Google Scholar]
  6. Ehrhardt C., Kardinal C., Wurzer W. J., Wolff T., von Eichel-Streiber C., Pleschka S., Planz O., Ludwig S. 2004).Rac1; and PAK1 are upstream of IKK- ε and TBK-1 in the viral activation of interferon regulatory factor-3. FEBS Lett 567:230–238 [CrossRef]
    [Google Scholar]
  7. Eidson K. M., Hobbs W. E., Manning B. J., Carlson P., DeLuca N. A. 2002; Expression of herpes simplex virus ICP0 inhibits the induction of interferon-stimulated genes by viral infection. J Virol 76:2180–2191 [CrossRef]
    [Google Scholar]
  8. Everett R. D., Cross A., Orr A. 1993; A truncated form of herpes simplex virus type 1 immediate-early protein Vmw110 is expressed in a cell type dependent manner. Virology 197:751–756 [CrossRef]
    [Google Scholar]
  9. Fukuhara T., Shimizu K., Kawakatsu T. & 8 other authors 2004; Activation of Cdc42 by trans interactions of the cell adhesion molecules nectins through c-Src and Cdc42-GEF FRG. J Cell Biol 166:393–405 [CrossRef]
    [Google Scholar]
  10. Gianni T., Campadelli-Fiume G., Menotti L. 2004; Entry of herpes simplex virus mediated by chimeric forms of nectin1 retargeted to endosomes or to lipid rafts occurs through acidic endosomes. J Virol 78:12268–12276 [CrossRef]
    [Google Scholar]
  11. Hall A. 1998; Rho GTPases and the actin cytoskeleton. Science 279:509–514 [CrossRef]
    [Google Scholar]
  12. Hansson G. C., Simons K., van Meer G. 1986; Two strains of the Madin–Darby canine kidney (MDCK) cell line have distinct glycosphingolipid compositions. EMBO J 5:483–489
    [Google Scholar]
  13. Herold B. C., Visalli R. J., Susmarski N., Brandt C. R., Spear P. G. 1994; Glycoprotein C-independent binding of herpes simplex virus to cells requires cell surface heparan sulphate and glycoprotein B. J Gen Virol 75:1211–1222 [CrossRef]
    [Google Scholar]
  14. Kawakatsu T., Shimizu K., Honda T., Fukuhara T., Hoshino T., Takai Y. 2002; trans -Interactions of nectins induce formation of filopodia and lamellipodia through the respective activation of Cdc42 and Rac small G proteins. J Biol Chem 277:50749–50755 [CrossRef]
    [Google Scholar]
  15. Kiosses W. B., Daniels R. H., Otey C., Bokoch G. M., Schwartz M. A. 1999; A role for p21-activated kinase in endothelial cell migration. J Cell Biol 147:831–844 [CrossRef]
    [Google Scholar]
  16. Kühn J. E., Kramer M. D., Willenbacher W., Wieland U., Lorentzen E. U., Braun R. W. 1990; Identification of herpes simplex virus type 1 glycoproteins interacting with the cell surface. J Virol 64:2491–2497
    [Google Scholar]
  17. Lamarche N., Tapon N., Stowers L., Burbelo P. D., Aspenström P., Bridges T., Chant J., Hall A. 1996; Rac and Cdc42 induce actin polymerization and G1 cell cycle progression independently of p65PAK and the JNK/SAPK MAP kinase cascade. Cell 87:519–529 [CrossRef]
    [Google Scholar]
  18. Machesky L. M., Insall R. H. 1998; Scar1 and the related Wiskott–Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex. Curr Biol 8:1347–1356 [CrossRef]
    [Google Scholar]
  19. McClelland D. A., Aitken J. D., Bhella D., McNab D., Mitchell J., Kelly S. M., Price N. C., Rixon F. J. 2002; pH reduction as a trigger for dissociation of herpes simplex virus type 1 scaffolds. J Virol 76:7407–7417 [CrossRef]
    [Google Scholar]
  20. Milne R. S. B., Nicola A. V., Whitbeck J. C., Eisenberg R. J., Cohen G. H. 2005; Glycoprotein D receptor-dependent, low-pH-independent endocytic entry of herpes simplex virus type 1. J Virol 79:6655–6663 [CrossRef]
    [Google Scholar]
  21. Muggeridge M. I., Isola V. J., Byrn R. A., Tucker T. J., Minson A. C., Glorioso J. C., Cohen G. H., Eisenberg R. J. 1988; Antigenic analysis of a major neutralization site of herpes simplex virus glycoprotein D, using deletion mutants and monoclonal antibody-resistant mutants. J Virol 62:3274–3280
    [Google Scholar]
  22. Murata T., Goshima F., Daikoku T., Takakuwa H., Nishiyama Y. 2000; Expression of herpes simplex virus type 2 US3 affects the Cdc42/Rac pathway and attenuates c-Jun N-terminal kinase activation. Genes Cells 5:1017–1027 [CrossRef]
    [Google Scholar]
  23. Nicola A. V., Straus S. E. 2004; Cellular and viral requirements for rapid endocytic entry of herpes simplex virus. J Virol 78:7508–7517 [CrossRef]
    [Google Scholar]
  24. Nicola A. V., McEvoy A. M., Straus S. E. 2003; Roles for endocytosis and low pH in herpes simplex virus entry into HeLa and Chinese hamster ovary cells. J Virol 77:5324–5332 [CrossRef]
    [Google Scholar]
  25. Nicola A. V., Hou J., Major E. O., Straus S. E. 2005; Herpes simplex virus type 1 enters human epidermal keratinocytes, but not neurons, via a pH-dependent endocytic pathway. J Virol 79:7609–7616 [CrossRef]
    [Google Scholar]
  26. Noren N. K., Niessen C. M., Gumbiner B. M., Burridge K. 2001; Cadherin engagement regulates Rho family GTPases. J Biol Chem 276:33305–33308 [CrossRef]
    [Google Scholar]
  27. Parkinson J., Everett R. D. 2000; Alphaherpesvirus proteins related to herpes simplex virus type 1 ICP0 affect cellular structures and proteins. J Virol 74:10006–10017 [CrossRef]
    [Google Scholar]
  28. Perez A., Li Q.-X., Perez-Romero P., DeLassus G., Lopez S. R., Sutter S., McLaren N., Fuller A. O. 2005; A new class of receptor for herpes simplex virus has heptad repeat motifs that are common to membrane fusion proteins. J Virol 79:7419–7430 [CrossRef]
    [Google Scholar]
  29. Ridley A. J. 2001; Rho GTPases and cell migration. J Cell Sci 114:2713–2722
    [Google Scholar]
  30. Schelhaas M., Jansen M., Haase I., Knebel-Mörsdorf D. 2003; Herpes simplex virus type 1 exhibits a tropism for basal entry in polarized epithelial cells. J Gen Virol 84:2473–2484 [CrossRef]
    [Google Scholar]
  31. Sells M. A., Boyd J. T., Chernoff J. 1999; p21-activated kinase 1 (Pak1) regulates cell motility in mammalian fibroblasts. J Cell Biol 145:837–849 [CrossRef]
    [Google Scholar]
  32. Small J. V., Stradal T., Vignal E., Rottner K. 2002; The lamellipodium: where motility begins. Trends Cell Biol 12:112–120 [CrossRef]
    [Google Scholar]
  33. Spear P. G. 2004; Herpes simplex virus: receptors and ligands for cell entry. Cell Microbiol 6:401–410 [CrossRef]
    [Google Scholar]
  34. Spear P. G., Eisenberg R. J., Cohen G. H. 2000; Three classes of cell surface receptors for alphaherpesvirus entry. Virology 275:1–8 [CrossRef]
    [Google Scholar]
  35. Whitbeck J. C., Muggeridge M. I., Rux A. H., Hou W., Krummenacher C., Lou H., van Geelen A., Eisenberg R. J., Cohen G. H. 1999; The major neutralizing antigenic site on herpes simplex virus glycoprotein D overlaps a receptor-binding domain. J Virol 73:9879–9890
    [Google Scholar]
  36. WuDunn D., Spear P. G. 1989; Initial interaction of herpes simplex virus with cells is binding to heparan sulfate. J Virol 63:52–58
    [Google Scholar]
  37. Yoon M., Spear P. G. 2002; Disruption of adherens junctions liberates nectin-1 to serve as receptor for herpes simplex virus and pseudorabies virus entry. J Virol 76:7203–7208 [CrossRef]
    [Google Scholar]
  38. Zhou Z. H., He J., Jakana J., Tatman J., Rixon F. J., Chiu W. 1995; Assembly of VP26 in herpes simplex virus-1 inferred from structures of wild-type and recombinant capsids. Nat Struct Biol 2:1026–1030 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82231-0
Loading
/content/journal/jgv/10.1099/vir.0.82231-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed