1887

Abstract

The aim of this study was to understand how molecular determinants of epithelial cells influence initial infection by herpes simplex virus type 1 (HSV-1). Upon infection of the epithelial MDCKII cell line, enhanced association of virus particles with cells forming actin protrusions was observed, suggesting a putative role of actin dynamics in HSV-1 infection. Thus, the impact of the small Rho-like GTPases Rac1, Cdc42 and RhoA acting as key regulators of actin dynamics was addressed. Endogenous Rac1 and Cdc42 were temporarily activated at 15 and 30 min after HSV-1 infection. When constitutively active Cdc42 or Rac1 mutants were expressed transiently, a significant decrease in infectivity was observed, whereas expression of RhoA mutants had no influence. Furthermore, dominant-negative Cdc42 led to decreased infectivity, whereas dominant-negative Rac1 had no effect. So far, the study of potential effectors indicated that Rac1/Cdc42 mutants inhibited infectivity independently of p21-activated kinase (Pak1). The inhibitory effect of Rac1/Cdc42 mutant expression on HSV-1 infection was characterized further and it was found that binding, internalization and transport of HSV-1 were not affected by expression of Rac1/Cdc42 mutants. Thus, these results provide the first evidence for a role of Rac1/Cdc42 signalling during early HSV-1 infection and suggest a mechanism relying on virus-induced regulation of Rac1/Cdc42 activities.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82231-0
2006-12-01
2019-11-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/12/3483.html?itemId=/content/journal/jgv/10.1099/vir.0.82231-0&mimeType=html&fmt=ahah

References

  1. Benard, V., Bohl, B. P. & Bokoch, G. M. ( 1999; ). Characterization of Rac and Cdc42 activation in chemoattractant-stimulated human neutrophils using a novel assay for active GTPases. J Biol Chem 274, 13198–13204.[CrossRef]
    [Google Scholar]
  2. Bishop, A. L. & Hall, A. ( 2000; ). Rho GTPases and their effector proteins. Biochem J 348, 241–255.[CrossRef]
    [Google Scholar]
  3. Bokoch, G. M. ( 2003; ). Biology of the p21-activated kinases. Annu Rev Biochem 72, 743–781.[CrossRef]
    [Google Scholar]
  4. Campadelli-Fiume, G., Cocchi, F., Menotti, L. & Lopez, M. ( 2000; ). The novel receptors that mediate the entry of herpes simplex viruses and animal alphaherpesviruses into cells. Rev Med Virol 10, 305–319.[CrossRef]
    [Google Scholar]
  5. Desai, P. & Person, S. ( 1998; ). Incorporation of the green fluorescent protein into the herpes simplex virus type 1 capsid. J Virol 72, 7563–7568.
    [Google Scholar]
  6. Ehrhardt, C., Kardinal, C., Wurzer, W. J., Wolff, T., von Eichel-Streiber, C., Pleschka, S., Planz, O. & Ludwig, S. ( 2004).; Rac1 and PAK1 are upstream of IKK- ε and TBK-1 in the viral activation of interferon regulatory factor-3. FEBS Lett 567 , 230 –238. [CrossRef]
    [Google Scholar]
  7. Eidson, K. M., Hobbs, W. E., Manning, B. J., Carlson, P. & DeLuca, N. A. ( 2002; ). Expression of herpes simplex virus ICP0 inhibits the induction of interferon-stimulated genes by viral infection. J Virol 76, 2180–2191.[CrossRef]
    [Google Scholar]
  8. Everett, R. D., Cross, A. & Orr, A. ( 1993; ). A truncated form of herpes simplex virus type 1 immediate-early protein Vmw110 is expressed in a cell type dependent manner. Virology 197, 751–756.[CrossRef]
    [Google Scholar]
  9. Fukuhara, T., Shimizu, K., Kawakatsu, T. & 8 other authors ( 2004; ). Activation of Cdc42 by trans interactions of the cell adhesion molecules nectins through c-Src and Cdc42-GEF FRG. J Cell Biol 166, 393–405.[CrossRef]
    [Google Scholar]
  10. Gianni, T., Campadelli-Fiume, G. & Menotti, L. ( 2004; ). Entry of herpes simplex virus mediated by chimeric forms of nectin1 retargeted to endosomes or to lipid rafts occurs through acidic endosomes. J Virol 78, 12268–12276.[CrossRef]
    [Google Scholar]
  11. Hall, A. ( 1998; ). Rho GTPases and the actin cytoskeleton. Science 279, 509–514.[CrossRef]
    [Google Scholar]
  12. Hansson, G. C., Simons, K. & van Meer, G. ( 1986; ). Two strains of the Madin–Darby canine kidney (MDCK) cell line have distinct glycosphingolipid compositions. EMBO J 5, 483–489.
    [Google Scholar]
  13. Herold, B. C., Visalli, R. J., Susmarski, N., Brandt, C. R. & Spear, P. G. ( 1994; ). Glycoprotein C-independent binding of herpes simplex virus to cells requires cell surface heparan sulphate and glycoprotein B. J Gen Virol 75, 1211–1222.[CrossRef]
    [Google Scholar]
  14. Kawakatsu, T., Shimizu, K., Honda, T., Fukuhara, T., Hoshino, T. & Takai, Y. ( 2002; ). trans-Interactions of nectins induce formation of filopodia and lamellipodia through the respective activation of Cdc42 and Rac small G proteins. J Biol Chem 277, 50749–50755.[CrossRef]
    [Google Scholar]
  15. Kiosses, W. B., Daniels, R. H., Otey, C., Bokoch, G. M. & Schwartz, M. A. ( 1999; ). A role for p21-activated kinase in endothelial cell migration. J Cell Biol 147, 831–844.[CrossRef]
    [Google Scholar]
  16. Kühn, J. E., Kramer, M. D., Willenbacher, W., Wieland, U., Lorentzen, E. U. & Braun, R. W. ( 1990; ). Identification of herpes simplex virus type 1 glycoproteins interacting with the cell surface. J Virol 64, 2491–2497.
    [Google Scholar]
  17. Lamarche, N., Tapon, N., Stowers, L., Burbelo, P. D., Aspenström, P., Bridges, T., Chant, J. & Hall, A. ( 1996; ). Rac and Cdc42 induce actin polymerization and G1 cell cycle progression independently of p65PAK and the JNK/SAPK MAP kinase cascade. Cell 87, 519–529.[CrossRef]
    [Google Scholar]
  18. Machesky, L. M. & Insall, R. H. ( 1998; ). Scar1 and the related Wiskott–Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex. Curr Biol 8, 1347–1356.[CrossRef]
    [Google Scholar]
  19. McClelland, D. A., Aitken, J. D., Bhella, D., McNab, D., Mitchell, J., Kelly, S. M., Price, N. C. & Rixon, F. J. ( 2002; ). pH reduction as a trigger for dissociation of herpes simplex virus type 1 scaffolds. J Virol 76, 7407–7417.[CrossRef]
    [Google Scholar]
  20. Milne, R. S. B., Nicola, A. V., Whitbeck, J. C., Eisenberg, R. J. & Cohen, G. H. ( 2005; ). Glycoprotein D receptor-dependent, low-pH-independent endocytic entry of herpes simplex virus type 1. J Virol 79, 6655–6663.[CrossRef]
    [Google Scholar]
  21. Muggeridge, M. I., Isola, V. J., Byrn, R. A., Tucker, T. J., Minson, A. C., Glorioso, J. C., Cohen, G. H. & Eisenberg, R. J. ( 1988; ). Antigenic analysis of a major neutralization site of herpes simplex virus glycoprotein D, using deletion mutants and monoclonal antibody-resistant mutants. J Virol 62, 3274–3280.
    [Google Scholar]
  22. Murata, T., Goshima, F., Daikoku, T., Takakuwa, H. & Nishiyama, Y. ( 2000; ). Expression of herpes simplex virus type 2 US3 affects the Cdc42/Rac pathway and attenuates c-Jun N-terminal kinase activation. Genes Cells 5, 1017–1027.[CrossRef]
    [Google Scholar]
  23. Nicola, A. V. & Straus, S. E. ( 2004; ). Cellular and viral requirements for rapid endocytic entry of herpes simplex virus. J Virol 78, 7508–7517.[CrossRef]
    [Google Scholar]
  24. Nicola, A. V., McEvoy, A. M. & Straus, S. E. ( 2003; ). Roles for endocytosis and low pH in herpes simplex virus entry into HeLa and Chinese hamster ovary cells. J Virol 77, 5324–5332.[CrossRef]
    [Google Scholar]
  25. Nicola, A. V., Hou, J., Major, E. O. & Straus, S. E. ( 2005; ). Herpes simplex virus type 1 enters human epidermal keratinocytes, but not neurons, via a pH-dependent endocytic pathway. J Virol 79, 7609–7616.[CrossRef]
    [Google Scholar]
  26. Noren, N. K., Niessen, C. M., Gumbiner, B. M. & Burridge, K. ( 2001; ). Cadherin engagement regulates Rho family GTPases. J Biol Chem 276, 33305–33308.[CrossRef]
    [Google Scholar]
  27. Parkinson, J. & Everett, R. D. ( 2000; ). Alphaherpesvirus proteins related to herpes simplex virus type 1 ICP0 affect cellular structures and proteins. J Virol 74, 10006–10017.[CrossRef]
    [Google Scholar]
  28. Perez, A., Li, Q.-X., Perez-Romero, P., DeLassus, G., Lopez, S. R., Sutter, S., McLaren, N. & Fuller, A. O. ( 2005; ). A new class of receptor for herpes simplex virus has heptad repeat motifs that are common to membrane fusion proteins. J Virol 79, 7419–7430.[CrossRef]
    [Google Scholar]
  29. Ridley, A. J. ( 2001; ). Rho GTPases and cell migration. J Cell Sci 114, 2713–2722.
    [Google Scholar]
  30. Schelhaas, M., Jansen, M., Haase, I. & Knebel-Mörsdorf, D. ( 2003; ). Herpes simplex virus type 1 exhibits a tropism for basal entry in polarized epithelial cells. J Gen Virol 84, 2473–2484.[CrossRef]
    [Google Scholar]
  31. Sells, M. A., Boyd, J. T. & Chernoff, J. ( 1999; ). p21-activated kinase 1 (Pak1) regulates cell motility in mammalian fibroblasts. J Cell Biol 145, 837–849.[CrossRef]
    [Google Scholar]
  32. Small, J. V., Stradal, T., Vignal, E. & Rottner, K. ( 2002; ). The lamellipodium: where motility begins. Trends Cell Biol 12, 112–120.[CrossRef]
    [Google Scholar]
  33. Spear, P. G. ( 2004; ). Herpes simplex virus: receptors and ligands for cell entry. Cell Microbiol 6, 401–410.[CrossRef]
    [Google Scholar]
  34. Spear, P. G., Eisenberg, R. J. & Cohen, G. H. ( 2000; ). Three classes of cell surface receptors for alphaherpesvirus entry. Virology 275, 1–8.[CrossRef]
    [Google Scholar]
  35. Whitbeck, J. C., Muggeridge, M. I., Rux, A. H., Hou, W., Krummenacher, C., Lou, H., van Geelen, A., Eisenberg, R. J. & Cohen, G. H. ( 1999; ). The major neutralizing antigenic site on herpes simplex virus glycoprotein D overlaps a receptor-binding domain. J Virol 73, 9879–9890.
    [Google Scholar]
  36. WuDunn, D. & Spear, P. G. ( 1989; ). Initial interaction of herpes simplex virus with cells is binding to heparan sulfate. J Virol 63, 52–58.
    [Google Scholar]
  37. Yoon, M. & Spear, P. G. ( 2002; ). Disruption of adherens junctions liberates nectin-1 to serve as receptor for herpes simplex virus and pseudorabies virus entry. J Virol 76, 7203–7208.[CrossRef]
    [Google Scholar]
  38. Zhou, Z. H., He, J., Jakana, J., Tatman, J., Rixon, F. J. & Chiu, W. ( 1995; ). Assembly of VP26 in herpes simplex virus-1 inferred from structures of wild-type and recombinant capsids. Nat Struct Biol 2, 1026–1030.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82231-0
Loading
/content/journal/jgv/10.1099/vir.0.82231-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error