Competition and complementation between thymidine kinase-negative and wild-type herpes simplex virus during co-infection of mouse trigeminal ganglia Free

Abstract

Laboratory strains of herpes simplex virus lacking thymidine kinase (TK) cannot replicate acutely to detectable levels in mouse trigeminal ganglia and do not reactivate from latency. However, many pathogenic clinical isolates that are resistant to the antiviral drug acyclovir are heterogeneous populations of TK-negative (TK) and TK-positive (TK) viruses. To recapitulate this , mice were infected with mixtures of wild-type virus and a recombinant TK mutant in various ratios. Following co-infection, the replication, number of latent viral genomes and reactivation efficiency of TK virus in trigeminal ganglia were reduced in a manner related to the amount of TK virus in the inoculum. TK virus did not always complement the acute replication or increase the number of latent viral genomes of TK mutant in mouse ganglia. Even so, TK virus could still confer the pathogenic phenotype to a TK mutant, somehow providing sufficient TK activity to permit a TK mutant to reactivate from latently infected ganglia.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82223-0
2006-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/12/3495.html?itemId=/content/journal/jgv/10.1099/vir.0.82223-0&mimeType=html&fmt=ahah

References

  1. Chen S.-H., Cook W. J., Grove K. L., Coen D. M. 1998; Human thymidine kinase can functionally replace herpes simplex virus type 1 thymidine kinase for viral replication and in mouse sensory ganglia and reactivation from latency upon explant. J Virol 72:6710–6715
    [Google Scholar]
  2. Chen S.-H., Pearson A., Coen D. M., Chen S.-H. 2004; Failure of thymidine kinase-negative herpes simplex virus to reactivate from latency following efficient establishment. J Virol 78:520–523 [CrossRef]
    [Google Scholar]
  3. Christophers J., Clayton J., Craske J., Ward R., Collins P., Trowbridge M., Darby G. 1998; Survey of resistance of herpes simplex virus to acyclovir in northwest England. Antimicrob Agents Chemother 42:868–872
    [Google Scholar]
  4. Coen D. M., Irmiere A. F., Jacobson J. G., Kerns K. M. 1989a; Low levels of herpes simplex virus thymidine-thymidylate kinase are not limiting for sensitivity to certain antiviral drugs or for latency in a mouse model. Virology 168:221–231 [CrossRef]
    [Google Scholar]
  5. Coen D. M., Kosz-Vnenchak M., Jacobson J. G., Leib D. A., Bogard C. L., Schaffer P. A., Tyler K. L., Knipe D. M. 1989b; Thymidine kinase-negative herpes simplex virus mutants establish latency in mouse trigeminal ganglia but do not reactivate. Proc Natl Acad Sci U S A 86:4736–4740 [CrossRef]
    [Google Scholar]
  6. Davar G., Kramer M. F., Garber D. & 8 other authors 1994; Comparative efficacy of expression of genes delivered to mouse sensory neurons with herpes virus vectors. J Comp Neurol 339:3–11 [CrossRef]
    [Google Scholar]
  7. Di Stefano G., Casoli T., Fattoretti P., Gracciotti N., Solazzi M., Bertoni-Freddari C. 2001; Distribution of MAP2 in hippocampus and cerebellum of young and old rats by quantitative immunohistochemistry. J Histochem Cytochem 49:1065–1066 [CrossRef]
    [Google Scholar]
  8. Efstathiou S., Kemp S., Darby G., Minson A. C. 1989; The role of herpes simplex virus type 1 thymidine kinase in pathogenesis. J Gen Virol 70:869–879 [CrossRef]
    [Google Scholar]
  9. Ellis M. N., Waters R., Hill E. L., Lobe D. C., Selleseth D. W., Barry D. W. 1989; Orofacial infection of athymic mice with defined mixtures of acyclovir-susceptible and acyclovir-resistant herpes simplex virus type 1. Antimicrob Agents Chemother 33:304–310 [CrossRef]
    [Google Scholar]
  10. Englund J. A., Zimmerman M. E., Swierkosz E. M., Goodman J. L., Scholl D. R., Balfour H. H., Jr. 1990; Herpes simplex virus resistant to acyclovir: a study in a tertiary care center. Ann Intern Med 112:416–422 [CrossRef]
    [Google Scholar]
  11. Evans J. S., Lock K. P., Levine B. A., Champness J. N., Sanderson M. R., Summers W. C., McLeish P. J., Buchan A. 1998).Herpesviral; thymidine kinases: laxity and resistance by design. J Gen Virol 79:2083–2092
    [Google Scholar]
  12. Field H. J. 1982; Development of clinical resistance to acyclovir in herpes simplex virus-infected mice receiving oral therapy. Antimicrob Agents Chemother 21:744–752 [CrossRef]
    [Google Scholar]
  13. Field H. J., Lay E. 1984; Characterization of latent infections in mice inoculated with herpes simplex virus which is clinically resistant to acyclovir. Antivir Res 4:43–52 [CrossRef]
    [Google Scholar]
  14. Gilbert C., Bestman-Smith J., Boivin G. 2002; Resistance of herpesviruses to antiviral drugs: clinical impacts and molecular mechanisms. Drug Resist Updat 5:88–114 [CrossRef]
    [Google Scholar]
  15. Griffiths A., Coen D. M. 2003; High-frequency phenotypic reversion and pathogenicity of an acyclovir-resistant herpes simplex virus mutant. J Virol 77:2282–2286 [CrossRef]
    [Google Scholar]
  16. Griffiths A., Renfrey S., Minson T. 1998; Glycoprotein C-deficient mutants of two strains of herpes simplex virus type 1 exhibit unaltered adsorption characteristics on polarized or non-polarized cells. J Gen Virol 79:807–812
    [Google Scholar]
  17. Griffiths A., Chen S.-H., Horsburgh B. C., Coen D. M. 2003; Translational compensation of a frameshift mutation affecting herpes simplex virus thymidine kinase is sufficient to permit reactivation from latency. J Virol 77:4703–4709 [CrossRef]
    [Google Scholar]
  18. Horsburgh B. C., Chen S.-H., Hu A., Mulamba G. B., Burns W. H., Coen D. M. 1998; Recurrent acyclovir-resistant herpes simplex virus in an immunocompromised patient: can strain differences compensate for loss of thymidine kinase in pathogenesis?. J Infect Dis 178:618–625 [CrossRef]
    [Google Scholar]
  19. Hwang C. B. C., Horsburgh B., Pelosi E., Roberts S., Digard P., Coen D. M. 1994; A net +1 frameshift permits synthesis of thymidine kinase from a drug-resistant herpes simplex virus mutant. Proc Natl Acad Sci U S A 91:5461–5465 [CrossRef]
    [Google Scholar]
  20. Jacobson J. G., Chen S.-H., Cook W. J., Kramer M. F., Coen D. M. 1998; Importance of the herpes simplex virus UL24 gene for productive ganglionic infection in mice. Virology 242:161–169 [CrossRef]
    [Google Scholar]
  21. Javier R. T., Sedarati F., Stevens J. G. 1986; Two avirulent herpes simplex viruses generate lethal recombinants in vivo. Science 234:746–748 [CrossRef]
    [Google Scholar]
  22. Katz J. P., Bodin E. T., Coen D. M. 1990; Quantitative polymerase chain reaction analysis of herpes simplex virus DNA in ganglia of mice infected with replication-incompetent mutants. J Virol 64:4288–4295
    [Google Scholar]
  23. Kramer M. F., Coen D. M. 1995; Quantification of transcripts from the ICP4 and thymidine kinase genes in mouse ganglia latently infected with herpes simplex virus. J Virol 69:1389–1399
    [Google Scholar]
  24. Leib D. A., Nadeau K. C., Rundle S. A., Schaffer P. A. 1991; The promoter of the latency-associated transcripts of herpes simplex virus type 1 contains a functional cAMP-response element: role of the latency-associated transcripts and cAMP in reactivation of viral latency. Proc Natl Acad Sci U S A 88:48–52 [CrossRef]
    [Google Scholar]
  25. Sainz B. Jr, Halford W. P. 2002; Alpha/beta interferon and gamma interferon synergize to inhibit the replication of herpes simplex virus type 1. J Virol 76:11541–11550 [CrossRef]
    [Google Scholar]
  26. Sasadeusz J. J., Sacks S. L. 1996; Spontaneous reactivation of thymidine kinase-deficient, acyclovir-resistant type-2 herpes simplex virus: masked heterogeneity or reversion?. J Infect Dis 174:476–482 [CrossRef]
    [Google Scholar]
  27. Sasadeusz J. J., Tufaro F., Safrin S., Schubert K., Hubinette M. M., Cheung P. K., Sacks S. L. 1997; Homopolymer mutational hot spots mediate herpes simplex virus resistance to acyclovir. J Virol 71:3872–3878
    [Google Scholar]
  28. Sedarati F., Javier R. T., Stevens J. G. 1988; Pathogenesis of a lethal mixed infection in mice with two nonneuroinvasive herpes simplex virus strains. J Virol 62:3037–3039
    [Google Scholar]
  29. Tenser R. B., Edris W. A. 1987; Trigeminal ganglion infection by thymidine kinase-negative mutants of herpes simplex virus after in vivo complementation. J Virol 61:2171–2174
    [Google Scholar]
  30. Tenser R. B., Ressel S., Dunstan M. E. 1981; Herpes simplex virus thymidine kinase expression in trigeminal ganglion infection: correlation of enzyme activity with ganglion virus titer and evidence of in vivo complementation. Virology 112:328–341 [CrossRef]
    [Google Scholar]
  31. Tenser R. B., Gaydos A., Hay K. A. 1996; Reactivation of thymidine kinase-defective herpes simplex virus is enhanced by nucleoside. J Virol 70:1271–1276
    [Google Scholar]
  32. Thompson R. L., Sawtell N. M. 2000; Replication of herpes simplex virus type 1 within trigeminal ganglia is required for high frequency but not high viral genome copy number latency. J Virol 74:965–974 [CrossRef]
    [Google Scholar]
  33. Weller S. K., Aschman D. P., Sacks W. R., Coen D. M., Schaffer P. A. 1983; Genetic analysis of temperature-sensitive mutants of HSV-1: the combined use of complementation and physical mapping for cistron assignment. Virology 130:290–305 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82223-0
Loading
/content/journal/jgv/10.1099/vir.0.82223-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed