1887

Abstract

Several studies have generated computer-based predictions of secondary structure of the 3′ untranslated region (UTR) of (DEN); however, experimental verification of the formation of these structures is lacking. This study assessed the congruence of Mfold predictions of secondary structure of the core region of the DEN type 4 3′ UTR with nuclease maps of this region. Maps and predictions were largely consistent. Maps supported the existence of previously predicted pseudoknots and identified putative regions of dynamic folding. Additionally, this study investigated previously identified conserved elements in the flavivirus 3′ UTR that differ among viruses with different modes of transmission. Specific regions of mosquito-borne DEN type 4 were either deleted or replaced with homologous sequences from tick-borne . All of these mutations caused substantial distortion of secondary structure, yet viruses carrying these mutations were viable.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82182-0
2006-11-01
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/11/3291.html?itemId=/content/journal/jgv/10.1099/vir.0.82182-0&mimeType=html&fmt=ahah

References

  1. Alvarez, D. E., Lodeiro, M. F., Ludueña, S. J., Pietrasanta, L. I. & Gamarnick, A. V. ( 2005a; ). Long-range RNA-RNA interactions circularize the dengue virus genome. J Virol 79, 6631–6643.[CrossRef]
    [Google Scholar]
  2. Alvarez, D. E., De Lella Ezcurra, A. L., Fucito, S. & Gamarnick, A. V. ( 2005b; ). Role of RNA structures present at the 3′UTR of dengue virus on translation, RNA synthesis, and viral replication. Virology 339, 200–212.[CrossRef]
    [Google Scholar]
  3. Blaney, J. E., Jr, Durbin, A. P., Murphy, B. R. & Whitehead, S. S. ( 2006; ). Development of a live attenuated dengue virus vaccine using reverse genetics. Viral Immunol 19, 10–32.[CrossRef]
    [Google Scholar]
  4. Chen, M.-H. & Frey, T. K. ( 1999; ). Mutagenic analysis of the 3′ cis-acting elements of the rubella virus genome. J Virol 73, 3386–3403.
    [Google Scholar]
  5. Christiansen, J. & Garrett, R. ( 1988; ). Enzymatic and chemical probing of ribosomal RNA-protein interactions. Methods Enzymol 164, 456–468.
    [Google Scholar]
  6. Cook, S. & Holmes, E. C. ( 2005; ). A multigene analysis of the phylogenetic relationships among the flaviviruses (family: Flaviviridae) and the evolution of vector transmission. Arch Virol 151, 309–325.
    [Google Scholar]
  7. Durbin, A. P., Karron, R. A., Sun, W. & 10 other authors ( 2001; ). Attenuation and immunogenicity in humans of a live dengue virus type-4 vaccine candidate with a 30 nucleotide deletion in its 3′-untranslated region. Am J Trop Med Hyg 65, 405–413.
    [Google Scholar]
  8. Elghonemy, S., Davis, W. G. & Brinton, M. A. ( 2005; ). The majority of the nucleotides in the top loop of the genomic 3′ terminal stem loop structure are cis-acting in a West Nile virus infectious clone. Virology 331, 238–246.[CrossRef]
    [Google Scholar]
  9. Hahn, C. S., Hahn, Y. S., Rice, C. M., Lee, E., Dalgarno, L., Strauss, E. G. & Strauss, J. H. ( 1987; ). Conserved elements in the 3′ untranslated region of flavivirus RNAs and potential cyclization sequences. J Mol Biol 198, 33–41.[CrossRef]
    [Google Scholar]
  10. Halstead, S. B. & Deen, J. ( 2002; ). The future of dengue vaccines. Lancet 360, 1243–1245.[CrossRef]
    [Google Scholar]
  11. Hanley, K. A., Lee, J. J., Blaney, J. E., Jr, Murphy, B. R. & Whitehead, S. S. ( 2002; ). Paired charge-to-alanine mutagenesis of dengue virus type 4 NS5 generates mutants with temperature-sensitive, host range, and mouse attenuation phenotypes. J Virol 76, 525–531.[CrossRef]
    [Google Scholar]
  12. Leyssen, P., Charlier, N., Lemey, P., Billoir, F., Vandamme, A.-M., De Clercq, E., de Lamballerie, X. & Neyts, J. ( 2002; ). Complete genome sequence, taxonomic assignment, and comparative analysis of the untranslated regions of the Modoc virus, a flavivirus with no known vector. Virology 293, 125–140.[CrossRef]
    [Google Scholar]
  13. Lowman, H. B. & Draper, D. E. ( 1986; ). On the recognition of helical RNA by cobra venom V1 nuclease. J Biol Chem 261, 5396–5403.
    [Google Scholar]
  14. Mackenzie, J. S., Gubler, D. J. & Petersen, L. R. ( 2004; ). Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile, and dengue viruses. Nat Med 10, S98–S109.[CrossRef]
    [Google Scholar]
  15. Mandl, C. W., Holzmann, H., Kunz, C. & Heinz, F. X. ( 1993; ). Complete genomic sequence of Powassan virus: evaluation of genetic elements in tick-borne versus mosquito-borne flaviviruses. Virology 194, 173–184.[CrossRef]
    [Google Scholar]
  16. Markoff, L. ( 2003; ). 5′- and 3′-noncoding regions in flavivirus RNA. Adv Virus Res 59, 177–228.
    [Google Scholar]
  17. Martin, S. J. ( 1994; ). Vaccine design: future possibilities and potentials. Biotechnol Adv 12, 619–624.[CrossRef]
    [Google Scholar]
  18. Men, R., Bray, M., Clark, D., Chanock, R. M. & Lai, C.-J. ( 1996; ). Dengue type 4 virus mutants containing deletions in the 3′ noncoding region of the RNA genome: analysis of growth restriction in cell culture and altered viremia pattern and immunogenicity in rhesus monkeys. J Virol 70, 3930–3937.
    [Google Scholar]
  19. Olsthoorn, R. C. & Bol, J. F. ( 2001; ). Sequence comparison and secondary structure analysis of the 3′ noncoding region of flavivirus genomes reveals multiple pseudoknots. RNA 7, 1370–1377.
    [Google Scholar]
  20. Pletnev, A. G., Bray, M., Hanley, K. A., Speicher, J. & Elkins, R. ( 2001; ). Tick-borne Langat/mosquito-borne dengue flavivirus chimera, a candidate live attenuated vaccine for protection against disease caused by members of the tick-borne encephalitis virus complex: evaluation in rhesus monkeys and in mosquitoes. J Virol 75, 8259–8267.[CrossRef]
    [Google Scholar]
  21. Proutski, V., Gould, E. A. & Holmes, E. C. ( 1997; ). Secondary structure of the 3′ untranslated region of flaviviruses: similarities and differences. Nucleic Acids Res 25, 1194–1202.[CrossRef]
    [Google Scholar]
  22. Proutski, V., Gritsun, T. S., Gould, E. A. & Holmes, E. C. ( 1999; ). Biological consequences of deletions within the 3′-untranslated region of flaviviruses may be due to rearrangements of RNA secondary structure. Virus Res 64, 107–123.[CrossRef]
    [Google Scholar]
  23. Pugachev, K. V., Guirakhoo, F. & Monath, T. P. ( 2005; ). New developments in flavivirus vaccines with special attention to yellow fever. Curr Opin Infect Dis 18, 387–394.[CrossRef]
    [Google Scholar]
  24. Rice, C. M. ( 1996; ). Flaviviridae: the viruses and their replication. In Fields Virology, 3rd edn, pp. 931–959. Edited by B. N. Fields, D. M. Knipe & P. M. Howley. Philadelphia, PA: Lippincott–Raven.
  25. Shurtleff, A. C., Beasley, D. W. C., Chen, J. J. Y. & 9 other authors ( 2001; ). Genetic variation in the 3′ non-coding region of dengue viruses. Virology 281, 75–87.[CrossRef]
    [Google Scholar]
  26. Simmonds, P., Tuplin, A. & Evans, D. J. ( 2004; ). Detection of genome-scale ordered RNA structure (GORS) in genomes of positive-stranded RNA viruses: implications for virus evolution and host persistence. RNA 10, 1337–1351.[CrossRef]
    [Google Scholar]
  27. Thurner, C., Witwer, C., Hofacker, I. L. & Stadler, P. F. ( 2004; ). Conserved RNA secondary structures in Flaviviridae genomes. J Gen Virol 85, 1113–1124.[CrossRef]
    [Google Scholar]
  28. Tilgner, M. & Shi, P.-Y. ( 2004; ). Structure and function of the 3′ terminal six nucleotides of the West Nile virus genome in viral replication. J Virol 78, 8159–8171.[CrossRef]
    [Google Scholar]
  29. Tilgner, M., Deas, T. S. & Shi, P.-Y. ( 2005; ). The flavivirus-conserved penta-nucleotide in the 3′ stem-loop of the West Nile virus genome requires a specific sequence and structure for RNA synthesis, but not for viral translation. Virology 331, 375–386.[CrossRef]
    [Google Scholar]
  30. Tuplin, A., Evans, D. J. & Simmonds, P. ( 2004; ). Detailed mapping of RNA secondary structures in core and NS5B-encoding region sequences of hepatitis C virus by RNase cleavage and novel bioinformatic prediction methods. J Gen Virol 85, 3037–3047.[CrossRef]
    [Google Scholar]
  31. Weaver, S. C. & Barrett, A. D. T. ( 2004; ). Transmission cycles, host range, evolution and emergence of arboviral disease. Nat Rev Microbiol 2, 789–801.[CrossRef]
    [Google Scholar]
  32. Yu, L. & Markoff, L. ( 2005; ). The topology of bulges in the long stem of the flavivirus 3′ stem-loop is a major determinant of RNA replication competence. J Virol 79, 2309–2324.[CrossRef]
    [Google Scholar]
  33. Zeng, L., Falgout, B. & Markoff, L. ( 1998; ). Identification of specific nucleotide sequences within the conserved 3′-SL in the dengue type 2 virus genome required for replication. J Virol 72, 7510–7522.
    [Google Scholar]
  34. Ziehler, W. A. & Engelke, D. R. ( 2000; ). Probing RNA structure with chemical reagents and enzymes. In Current Protocols in Nucleic Acid Chemistry, pp. 6.1.1–6.1.21. Edited by S. L. Beaucage, D. E. Bergstrom, G. D. Glick & R. A. Jones. New York: Wiley.
  35. Zuker, M. ( 2003; ). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31, 3406–3415.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82182-0
Loading
/content/journal/jgv/10.1099/vir.0.82182-0
Loading

Data & Media loading...

Supplements

vol. , part 11, pp. 3291 – 3296

Post-transfection titres of wild-type (rDEN4) and viruses carrying designated mutations in the 3′ untranslated region [ PDF] (100 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error