Skip to content
1887

Abstract

Chimpanzees are susceptible to human immunodeficiency virus type-1 (HIV-1) and develop persistent infection but generally do not progress to full-blown AIDS. Several host and immunological factors have been implicated in mediating resistance to disease progression. Chimpanzees have a higher prevalence of circulating natural killer (NK) cells than humans; however, their role in mediating resistance to disease progression is not well understood. Furthermore, NK cell survival and activity have been shown to be dependent on interleukin-15 (IL-15). Accordingly, the influence of IL-15 on NK cell activity and gamma interferon (IFN-) production was evaluated in naive and HIV-1-infected chimpanzees. stimulation of whole-blood cultures with recombinant gp120 (rgp120) resulted in enhanced IFN- production predominantly by the CD3 CD8 subset of NK cells, and addition of anti-IL-15 to the system decreased IFN- production. Moreover, stimulation with recombinant IL-15 (rIL-15) augmented IFN- production from this subset of NK cells and increased NK cell cytotoxic activity. Stimulation with rgp120 also resulted in a 2- to 7-fold increase in IL-15 production. These findings suggest that chimpanzee CD3 CD8 NK cells play a vital role in controlling HIV-1 infection by producing high levels of IFN-, and that IL-15 elicits IFN- production in this subpopulation of NK cells in HIV-1-infected chimpanzees.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82154-0
2007-02-01
2025-01-13
Loading full text...

Full text loading...

References

  1. Addo M. M., Yu X. G., Rathod A., Cohen D., Eldridge R. L., Strick D., Johnston M. N., Corcoran C., Wurcel A. G. other authors 2003; Comprehensive epitope analysis of human immunodeficiency virus type 1 (HIV-1)-specific T-cell responses directed against the entire expressed HIV-1 genome demonstrate broadly directed responses, but no correlation to viral load. J Virol 77:2081–2092 [CrossRef]
    [Google Scholar]
  2. Ahmad R., Sindhu S. T., Toma E., Morisset R., Ahamad A. 2003; Studies on the production of IL-15 in HIV infected/AIDS patients. J Clin Immunol 23:81–90 [CrossRef]
    [Google Scholar]
  3. Alter G., Malenfant J. M., Delabre R. M., Burgett N. C., Yu X. G., Lichterfeld M., Zaunders J., Altfeld M. 2004; Increased natural killer cell activity in viremic HIV-1 infection. J Immunol 173:5305–5311 [CrossRef]
    [Google Scholar]
  4. Azzoni L., Papasavvas E., Chehimi J., Kostman J. R., Mounzer K., Ondercin J., Perussia B., Montaner L. J. 2002; Sustained impairment of IFN- γ secretion in suppressed HIV-infected patients despite mature NK cell recovery: evidence for a defective reconstitution of innate immunity. J Immunol 168:5764–5770 [CrossRef]
    [Google Scholar]
  5. Balla-Jhagjhoorsingh S. S., Koopman G., Mooij P., Haaksama T. G. M., Teeuwsen V. J. P., Bontrop R. E., Heeney J. L. 1999; Conserved CTL epitopes shared between HIV-infected human long-term survivors and chimpanzees. J Immunol 162:2308–2314
    [Google Scholar]
  6. Bamford R. N., Battiata A. P., Burton J. D., Sharma H., Waldmann T. A. 1996; Interleukin (IL) 15/IL-T production by the adult T-cell lymphotrophic virus type I R region/IL-15 fusion message that lacks many upstream AUGs that normally attenuate IL-15 mRNA translation. Proc Natl Acad Sci U S A 93:2897–2902 [CrossRef]
    [Google Scholar]
  7. Betts M. R., Ambrozak D. R., Douek D. C., Bonhoeffer S., Brenchley J. M., Casazza J. P., Koup R. A., Picker L. J. 2001; Analysis of total human immunodeficiency virus (HIV)-specific CD4+ and CD8+ T-cell responses: relationship to viral load in untreated HIV infection. J Virol 75:11983–11991 [CrossRef]
    [Google Scholar]
  8. Castelli J., Thomas E. K., Gilliet M., Liu Y., Levy J. A. 2004; Mature dendritic cells can enhance CD8+ cell noncytotoxic anti-HIV responses: the role of IL-15. Blood 103:2699–2704 [CrossRef]
    [Google Scholar]
  9. Castro B. A., Homsy J., Lennette E., Murthy K. K., Eichberg J. W., Levy J. A. 1992; HIV-1 expression in chimpanzees can be activated by CD8+ cell depletion of CMV infection. Clin Immunol Immunopathol 65:227–233 [CrossRef]
    [Google Scholar]
  10. Davis I. C., Girard M., Fultz P. N. 1998; Loss of CD4+ T cells in human immunodeficiency virus type-1 infected chimpanzees is associated with increased lymphocyte apoptosis. J Virol 72:4623–4632
    [Google Scholar]
  11. Di Rienzo A. M., Furlini G., Olivier R., Ferris S., Heeney J., Montagnier L. 1994; Different proliferative response of human and chimpanzee lymphocyte after contact with human immunodeficiency virus type 1 gp120. Eur J Immunol 24:34–40 [CrossRef]
    [Google Scholar]
  12. Droge W., Murthy K. K., Stahl-Hennig C., Hartung S., Plesker R., Rouse S., Peterhans E., Kinscherf R., Fischbach T., Eck H. P. 1993; Plasma amino acid dysregulation after lentiviral infection. AIDS Res Hum Retroviruses 9:807–809 [CrossRef]
    [Google Scholar]
  13. Dunne J., Lynch S., O'Farrelly C., Todryk S., Hegarty F. E., Feighery C., Doherty D. G. 2001; Selective expansion and partial activation of human NK cells and NK receptor-positive T cells by IL-2 and IL-15. J Immunol 167:3129–3138 [CrossRef]
    [Google Scholar]
  14. Edwards B. H., Bansal A., Sabbaj S., Bakari J., Mulligan M. J., Goepfert P. A. 2002; Magnitude of functional CD8+ T-cell responses to the gag protein of human immunodeficiency virus type 1 correlates inversely with viral load in plasma. J Virol 76:2298–2305 [CrossRef]
    [Google Scholar]
  15. Fehniger T. A., Shah M. H., Turner M. J., VanDeusen J. B., Whitman S. P., Copper M. A., Suzuki K., Wechser M., Goodsaid F., Caligiuri M. A. 1999; Differential cytokine and chemokine gene expression by human NK cells following activation with IL-18 or IL-15 in combination with IL-12: implications for the innate immune response. J Immunol 162:4511–4520
    [Google Scholar]
  16. Ferlazzo G., Pack M., Thomas D., Paludan C., Schmid D., Strowig T., Bougras G., Muller W. A., Moretta L., Munz C. 2004; Distinct roles of IL-12 and IL-15 in human natural killer cell activation by dendritic cells from secondary lymphoid organs. Proc Natl Acad Sci U S A 101:16606–16611 [CrossRef]
    [Google Scholar]
  17. Gonzalez E., Kulkarni H., Bolivar H., Mangano A., Sanchez R., Catano G., Nibbs R. J., Freedman B. I., Quinones M. P. other authors 2005; The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility. Science 307:1434–1440 [CrossRef]
    [Google Scholar]
  18. Gougeon M. L., Garcia S., Heeney J., Tschopp R., Lecoeur H., Guetard D., Rame V., Dauguet C., Montagnier L. 1993; Programmed cell death in AIDS-related HIV and SIV infections. AIDS Res Hum Retroviruses 9:553–563 [CrossRef]
    [Google Scholar]
  19. Grabstein K. H., Eisenman J., Shanebeck K., Rauch C., Srinivasan S., Fung V., Beers C., Richardson J., Schoenborn M. A. other authors 1994; Cloning of a T cell growth factor that interacts with the β chain of the interleukin-2 receptor. Science 264:965–968 [CrossRef]
    [Google Scholar]
  20. Heeney J., Jonker R., Koornstra W., Dubbes R., Niphuis H., Di Rienzo A. M., Gougeon M. L., Montagnier L. 1993; The resistance of HIV-infected chimpanzees to progression to AIDS correlates with absence of HIV-related T-cell dysfunction. J Med Primatol 22:194–200
    [Google Scholar]
  21. Ibegbu C., Brodie-Hill A., Kourtis A. P., Carter A., McClure H., Wei Chen Z., Nahmias A. J. 2001; Use of human CD3 monoclonal antibody for accurate CD4+ and CD8+ lymphocyte determinations in macaques: phenotypic characterization of the CD3− CD8+ cell subset. J Med Primatol 30:291–298 [CrossRef]
    [Google Scholar]
  22. Kennedy M. K., Glaccum M., Brown S. N., Butz E. A., Viney J. L., Embers M., Matsuki N., Charrier K., Sedger L. other authors 2000; Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J Exp Med 191:771–780 [CrossRef]
    [Google Scholar]
  23. Kestens L., Vingerhoets J., Peeters M., Vanham G., Vereecken C., Penne G., Niphuis H., van Eerd P., van der Groen G. other authors 1995; Phenotypic and functional parameters of cellular immunity in a chimpanzee with a naturally acquired simian immunodeficiency virus infection. J Infect Dis 172:957–963 [CrossRef]
    [Google Scholar]
  24. Kottilil S., Chun T. W., Moir S., Liu S., McLaughlin M., Hallahan C. W., Maldarelli F., Corey L., Fauci A. S. 2003; Innate immunity in human immunodeficiency virus infection: effect of viremia on natural killer cell function. J Infect Dis 187:1038–1045 [CrossRef]
    [Google Scholar]
  25. Kuniyoshi J. S., Kuniyoshi C. J., Lim A. M., Wang F. Y., Bade E. R., Lau R., Thomas E. K., Weber J. S. 1999; Dendritic cell secretion of IL-15 is induced by recombinant huCD40LT and augments the stimulation of antigen-specific cytolytic T cells. Cell Immunol 193:48–58 [CrossRef]
    [Google Scholar]
  26. Lauw F. N., Dekkers P. E. P., te Velde A. A., Speelman P., Levi M., Kurimoto M., Hack C. E., van Deventer S. J. H., van der Poll T. 1999; Interleukin-12 induces sustained activation of multiple host inflammatory mediator systems in chimpanzees. J Infect Dis 179:646–652 [CrossRef]
    [Google Scholar]
  27. Lodolce J., Burkett P., Koka R., Boone D., Chien M., Chan F., Madonia M., Chai S., Ma A. 2002; Interleukin-15 and the regulation of lymphoid homeostasis. Mol Immunol 39:537–544 [CrossRef]
    [Google Scholar]
  28. Matano T., Shibata R., Siemon C., Connors M., Lane H. C., Martin M. A. 1998; Administration of an anti-CD8 monoclonal antibody interferes with the clearance of chimeric simian/human immunodeficiency virus during primary infections of rhesus macaques. J Virol 72:164–169
    [Google Scholar]
  29. Mueller Y. M., Petrovas C., Bojczuk P. M., Dimitriou I. D., Beer B., Silvera P., Villinger F., Cairns J. S., Gracely E. J. other authors 2005; Interleukin-15 increases effector memory CD8+ T cells and NK cells in simian immunodeficiency virus-infected macaques. J Virol 79:4877–4885 [CrossRef]
    [Google Scholar]
  30. Musso T., Calosso L., Zucca M., Millesimo M., Ravarino D., Giovarelli M., Malavasi F., Ponzi A. N., Paus R., Bulfone-Paus S. 1999; Human monocytes constitutively express membrane-bound, biologically active, and interferon-upregulated interleukin-15. Blood 93:3531–3539
    [Google Scholar]
  31. Neely G. G., Epelman S., Ma L. L., Colarusso P., Howlett C. J., Amankwah E. K., McIntyre A. C., Robbins S. M., Mody C. H. 2004; Monocyte surface-bound IL-15 can function as an activating receptor and participate in reverse signaling. J Immunol 172:4225–4234 [CrossRef]
    [Google Scholar]
  32. Nehete P. N., Schapiro S. F., Johnson P. C., Murthy K. K., Satterfield W. C., Sastry K. J. 1998; A synthetic peptide from the first conserved region in the envelope protein gp160 is a strong T-cell epitope in HIV-infected chimpanzees and humans. Viral Immunol 11:147–158 [CrossRef]
    [Google Scholar]
  33. Neri S., Mariani E., Meneghetti A., Cattini L., Facchini A. 2001; Calcein-acetyoxymethyl cytotoxicity assay: standardization of a method allowing additional analyses on recovered effector cells and supernatants. Clin Diagn Lab Immunol 8:1131–1135
    [Google Scholar]
  34. Novembre F. J., Saucier M., Anderson D. C., Klumpp S. A., O'Neil S. P., Brown C. R., Hart C. E., Guenthner P. C., Swenson R. B., McClure H. M. 1997; Development of AIDS in a chimpanzee infected with human immunodeficiency virus type 1. J Virol 71:4086–4091
    [Google Scholar]
  35. Obata-Onai A., Hashimoto S., Onai N., Kurachi M., Nagai S., Shizuno K., Nagahata T., Matsushima K. 2002; Comprehensive gene expression analysis of human NK cells and CD8+ T lymphocytes. Int Immunol 14:1085–1098 [CrossRef]
    [Google Scholar]
  36. Ogg G. S., Kostense S., Klein M. R., Jurriaans S., Hamann D., McMichael A. J., Miedema F. 1999; Longitudinal phenotypic analysis of human immunodeficiency virus type 1-specific cytotoxic T lymphocytes: correlation with disease progression. J Virol 73:9153–9160
    [Google Scholar]
  37. Ohteki T., Suzue K., Maki C., Ota T., Koyasu S. 2001; Critical role of IL-15-IL-15R for antigen-presenting cell functions in the innate immune response. Nat Immunol 2:1138–1143 [CrossRef]
    [Google Scholar]
  38. Ondoa P., Vingerhoets J., Vereecken C., Van Der Groen G., Heeney J. L., Kestens L. 2002; In vitro replication of SIVcpz is suppressed by β -chemokines and CD8+ T cells but not by natural killer cells of infected chimpanzees. AIDS Res Hum Retroviruses 18:373–382 [CrossRef]
    [Google Scholar]
  39. Ondoa P., Vereecken C., Fransen K., Colebunders R., van der Groen G., Heeney J. L., Kestens L. 2003; Human and simian immunodeficiency virus-infected chimpanzees do not have increased intracellular levels of β -chemokines in contrast to infected humans. J Med Virol 69:297–305 [CrossRef]
    [Google Scholar]
  40. O'Neil S. P., Novembre F. J., Hill A. B., Suwyn C., Hart C. E., Evans-Strickfaden T., Anderson D. C., deRosayro J., Herndon J. G. other authors 2000; Progressive infection in a subset of HIV-1 positive chimpanzees. J Infect Dis 182:1051–1062 [CrossRef]
    [Google Scholar]
  41. Palmer S., Wiegand A. P., Maldarelli F., Bazmi H., Mican J. M., Polis M., Dewar R. L., Planta A., Liu S. other authors 2003; New real-time reverse transcriptase-initiated PCR assay with single-copy sensitivity for human immunodeficiency virus type 1 RNA in plasma. J Clin Microbiol 41:4531–4536 [CrossRef]
    [Google Scholar]
  42. Pien G. C., Satoskar A. R., Takeda K., Akira S., Biron C. A. 2000; Selective IL-18 requirements for induction of compartmental IFN- γ responses during viral infection. J Immunol 165:4787–4791 [CrossRef]
    [Google Scholar]
  43. Ranson T., Vosshenrich C. A., Corcuff E., Richard O., Laloux V., Lehuen A., Di Santo J. P. 2003; IL-15 is an essential mediator of peripheral NK-cell homeostasis. Blood 101:4887–4893 [CrossRef]
    [Google Scholar]
  44. Sanders-Buell E., Salminen M. O., McCutchan F. E. 1995 Sequencing primers for HIV-1 Rockville, MD: Henry M. Jackson Foundation Research Laboratory and Division of Retrovirology, Walter Reed Army Institute of Research; http://hiv-web.lanl.gov/content/hiv-db/COMPENDIUM/1995/PART-III/3.pdf
    [Google Scholar]
  45. Schmidt K. N., Leung B., Kwong M., Zarember K. A., Satyal S., Navas T. A., Wang F., Godowski P. J. 2004; APC-independent activation of NK cells by the toll-like receptor 3 agonist double-stranded RNA. J Immunol 172:138–143 [CrossRef]
    [Google Scholar]
  46. Shu U., Kiniwa M., Wu C. Y., Maliszewski C., Vezzio N., Hakimi J., Gately M., Delespesse G. 1995; Activated T cells induce interleukin-12 production by monocytes via CD40−CD40 ligand interaction. Eur J Immunol 25:1125–1128 [CrossRef]
    [Google Scholar]
  47. Siren J., Sareneva T., Pirhonen J., Strengell M., Veckman V., Julkunen I., Matikainen S. 2004; Cytokine and contact-dependent activation of natural killer cells by influenza A or Sendai virus-infected macrophages. J Gen Virol 85:2357–2364 [CrossRef]
    [Google Scholar]
  48. Skov S., Bonyhadi M., Odum N., Ledbetter J. A. 2000; IL-2 and IL-15 regulate CD154 expression on activated CD4 T cells. J Immunol 164:3500–3505 [CrossRef]
    [Google Scholar]
  49. Strengell M., Matikainen S., Siren J., Lehtonen A., Foster D., Julkunen I., Sareneva T. 2003; IL-21 in synergy with IL-15 or IL-18 enhances IFN-gamma production in human NK and T cells. J Immunol 170:5464–5469 [CrossRef]
    [Google Scholar]
  50. ten Haaft P., Murthy K., Salas M., McClure H., Dubbes R., Koornstra W., Niphuis H., Davis D., van der Groen G., Heeney J. 2001; Differences in early virus loads with different phenotypic variants of HIV-1 and SIVcpz in chimpanzees. AIDS 15:2085–2092 [CrossRef]
    [Google Scholar]
  51. Vankayalapati R., Kulcar P., Wizel B., Weis S. E., Samten B., Safi H., Shams H., Barnes P. F. 2004; NK cells regulate CD8+ T cell effector function in response to an intracellular pathogen. J Immunol 172:130–137 [CrossRef]
    [Google Scholar]
  52. Vitale M., Caruso A., Licenziati S., Rodella L., Fiorentini S., Zauli G., Castelli F., Manzoli F. A., Turano A. 2000; Differential production of IFN- γ , analyzed at the single-cell level, by specific subsets of human NK and T cells from healthy and HIV+ subjects. Cytometry 39:189–194 [CrossRef]
    [Google Scholar]
  53. Voevodin A., Samilchuk E., Dashti S. 1998; A survey for 32 nucleotide deletion in the CCR-5 chemokine receptor gene (deltaccr-5) conferring resistance to human immunodeficiency virus type 1 in different ethnic groups and in chimpanzees. J Med Virol 55:147–151 [CrossRef]
    [Google Scholar]
  54. Waldmann T. A., Tagaya Y. 1999; The multifaceted regulation of interleukin-15 expression and the role of this cytokine in NK cell differentiation and host response to intracellular pathogens. Annu Rev Immunol 17:19–49 [CrossRef]
    [Google Scholar]
/content/journal/jgv/10.1099/vir.0.82154-0
Loading
/content/journal/jgv/10.1099/vir.0.82154-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error