1887

Abstract

The interaction of host-cell nucleic acid-binding proteins with the genomes of positive-stranded RNA viruses is known to play a role in the translation and replication of many viruses. To date, however, the characterization of similar interactions with the genomes of members of the family has been limited to binding analysis. In this study, (FCV) has been used as a model system to identify and characterize the role of host-cell factors that interact with the viral RNA. It was demonstrated that polypyrimidine tract-binding protein (PTB) interacts specifically with the 5′ sequences of the FCV genomic and subgenomic RNAs. Using RNA interference it was shown that PTB is required for efficient FCV replication in a temperature-dependent manner. siRNA-mediated knockdown of PTB resulted in a 15- to 100-fold reduction in virus titre, as well as a concomitant reduction in viral RNA and protein synthesis at 32 °C. In addition, virus-induced cytopathic effect was significantly delayed as a result of an siRNA-mediated reduction in PTB levels. A role for PTB in the calicivirus life cycle was more apparent at temperatures above and below 37 °C, fitting with the hypothesis that PTB functions as an RNA chaperone, potentially aiding the folding of RNA into functional structures. This is the first functional demonstration of a host-cell protein interacting with a calicivirus RNA.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82153-0
2006-11-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/11/3339.html?itemId=/content/journal/jgv/10.1099/vir.0.82153-0&mimeType=html&fmt=ahah

References

  1. Anwar A., Ali N., Tanveer R., Siddiqui A. 2000; Demonstration of functional requirement of polypyrimidine tract-binding protein by SELEX RNA during hepatitis C virus internal ribosome entry site-mediated translation initiation. J Biol Chem 275:34231–34235 [CrossRef]
    [Google Scholar]
  2. Asanaka M., Atmar R. L., Ruvolo V., Crawford S. E., Neill F. H., Estes M. K. 2005; Replication and packaging of Norwalk virus RNA in cultured mammalian cells. Proc Natl Acad Sci U S A 102:10327–10332 [CrossRef]
    [Google Scholar]
  3. Back S. H., Kim Y. K., Kim W. J., Cho S., Oh H. R., Kim J. E., Jang S. K. 2002; Translation of polioviral mRNA is inhibited by cleavage of polypyrimidine tract-binding proteins executed by polioviral 3C(pro). J Virol 76:2529–2542 [CrossRef]
    [Google Scholar]
  4. Bailey M. S., Boos C. J., Vautier G., Green A. D., Appleton H., Gallimore C. I., Gray J. J., Beeching N. J. 2005; Gastroenteritis outbreak in British troops, Iraq. Emerg Infect Dis 11:1625–1628 [CrossRef]
    [Google Scholar]
  5. Belisova A., Semrad K., Mayer O., Kocian G., Waigmann E., Schroeder R., Steiner G. 2005; RNA chaperone activity of protein components of human Ro RNPs. RNA 11:1084–1094 [CrossRef]
    [Google Scholar]
  6. Belsham G. J., Sonenberg N. 2000; Picornavirus RNA translation: roles for cellular proteins. Trends Microbiol 8:330–335 [CrossRef]
    [Google Scholar]
  7. Boussadia O., Niepmann M., Creancier L., Prats A.-C., Dautry F., Jacquemin-Sablon H. 2003; Unr is required in vivo for efficient initiation of translation from the internal ribosome entry sites of both rhinovirus and poliovirus. J Virol 77:3353–3359 [CrossRef]
    [Google Scholar]
  8. Bushell M., Sarnow P. 2002; Hijacking the translation apparatus by RNA viruses. J Cell Biol 158:395–399 [CrossRef]
    [Google Scholar]
  9. Daughenbaugh K. F., Fraser C. S., Hershey J. W., Hardy M. E. 2003; The genome-linked protein VPg of the Norwalk virus binds eIF3, suggesting its role in translation initiation complex recruitment. EMBO J 22:2852–2859 [CrossRef]
    [Google Scholar]
  10. Domitrovich A. M., Diebel K. W., Ali N., Sarker S., Siddiqui A. 2005; Role of La autoantigen and polypyrimidine tract-binding protein in HCV replication. Virology 335:72–86 [CrossRef]
    [Google Scholar]
  11. Duizer E., Schwab K. J., Neill F. H., Atmar R. L., Koopmans M. P. G., Estes M. K. 2004; Laboratory efforts to cultivate noroviruses. J Gen Virol 85:79–87 [CrossRef]
    [Google Scholar]
  12. Florez P. M., Sessions O. M., Wagner E. J., Gromeier M., Garcia-Blanco M. A. 2005; The polypyrimidine tract binding protein is required for efficient picornavirus gene expression and propagation. J Virol 79:6172–6179 [CrossRef]
    [Google Scholar]
  13. Gaskell R. M., Radford A. D., Dawson S. 2004; Feline infectious respiratory disease. In Feline Medicine and Therapeutics , 3rd edn. pp  577–595 Edited by Chandler E. A., Gaskell C. J., Gaskell R. M. Oxford: Blackwell Publishing;
    [Google Scholar]
  14. Ghetti A., Pinol-Roma S., Michael W. M., Morandi C., Dreyfuss G. 1992; hnRNP I, the polypyrimidine tract-binding protein: distinct nuclear localization and association with hnRNAs. Nucleic Acids Res 20:3671–3678 [CrossRef]
    [Google Scholar]
  15. Gontarek R. R., Gutshall L. L., Herold K. M., Tsai J., Sathe G. M., Mao J., Prescott C., Del Vecchio A. M. 1999; hnRNP C and polypyrimidine tract-binding protein specifically interact with the pyrimidine-rich region within the 3′NTR of the HCV RNA genome. Nucleic Acids Res 27:1457–1463 [CrossRef]
    [Google Scholar]
  16. Goodfellow I. G., Chaudhry Y., Richardson A., Meredith J. M., Almond J. W., Barclay W. S., Evans D. J. 2000; Identification of a cis -acting replication element (CRE) within the poliovirus coding region. J Virol 74:4590–4600 [CrossRef]
    [Google Scholar]
  17. Goodfellow I. G., Polacek C., Andino R., Evans D. J. 2003; The poliovirus 2C cis -acting replication element-mediated uridylylation of VPg is not required for synthesis of negative-sense genomes. J Gen Virol 84:2359–2363 [CrossRef]
    [Google Scholar]
  18. Goodfellow I., Chaudhry Y., Gioldasi I., Gerondopoulos A., Natoni A., Labrie L., Lailiberte J., Roberts L. 2005; Calicivirus translation initiation requires an interaction between VPg and eIF4E. EMBO Rep 6:968–972 [CrossRef]
    [Google Scholar]
  19. Gosert R., Chang K. H., Rijnbrand R., Yi M., Sangar D. V., Lemon S. M. 2000; Transient expression of cellular polypyrimidine-tract binding protein stimulates cap-independent translation directed by both picornaviral and flaviviral internal ribosome entry sites in vivo . Mol Cell Biol 20:1583–1595 [CrossRef]
    [Google Scholar]
  20. Gutierrez A. L., Denova-Ocampo M., Racaniello V. R., del Angel R. M. 1997; Attenuating mutations in the poliovirus 5′ untranslated region alter its interaction with polypyrimidine tract-binding protein. J Virol 71:3826–3833
    [Google Scholar]
  21. Gutierrez-Escolano A. L., Brito Z. U., del Angel R. M., Jiang X. 2000; Interaction of cellular proteins with the 5′ end of Norwalk virus genomic RNA. J Virol 74:8558–8562 [CrossRef]
    [Google Scholar]
  22. Gutierrez-Escolano A. L., Vazquez-Ochoa M., Escobar-Herrera J., Hernandez-Acosta J. 2003; La, PTB, and PAB proteins bind to the 3(′) untranslated region of Norwalk virus genomic RNA. Biochem Biophys Res Commun 311:759–766 [CrossRef]
    [Google Scholar]
  23. Herschlag D. 1995; RNA chaperones and the RNA folding problem. J Biol Chem 270:20871–20874 [CrossRef]
    [Google Scholar]
  24. Huang P., Lai M. M. 1999; Polypyrimidine tract-binding protein binds to the complementary strand of the mouse hepatitis virus 3′ untranslated region, thereby altering RNA conformation. J Virol 73:9110–9116
    [Google Scholar]
  25. Huang P., Lai M. M. 2001; Heterogeneous nuclear ribonucleoprotein a1 binds to the 3′-untranslated region and mediates potential 5′-3′-end cross talks of mouse hepatitis virus RNA. J Virol 75:5009–5017 [CrossRef]
    [Google Scholar]
  26. Hurley K. F., Sykes J. E. 2003; Update on feline calicivirus: new trends. Vet Clin North Am Small Anim Pract 33:759–772 [CrossRef]
    [Google Scholar]
  27. Kaminski A., Jackson R. J. 1998; The polypyrimidine tract binding protein (PTB) requirement for internal initiation of translation of cardiovirus RNAs is conditional rather than absolute. RNA 4:626–638 [CrossRef]
    [Google Scholar]
  28. Kaminski A., Hunt S. L., Patton J. G., Jackson R. J. 1995; Direct evidence that polypyrimidine tract binding-protein (PTB) is essential for internal initiation of translation of encephalomyocarditis virus-RNA. RNA 1:924–938
    [Google Scholar]
  29. Karst S. M., Wobus C. E., Lay M., Davidson J., Virgin H. W. IV 2003; STAT1-dependent innate immunity to a Norwalk-like virus. Science 299:1575–1578 [CrossRef]
    [Google Scholar]
  30. Li H. P., Huang P., Park S., Lai M. M. 1999; Polypyrimidine tract-binding protein binds to the leader RNA of mouse hepatitis virus and serves as a regulator of viral transcription. J Virol 73:772–777
    [Google Scholar]
  31. Lin C. H., Patton J. G. 1995; Regulation of alternative 3′ splice site selection by constitutive splicing factors. RNA 1:234–245
    [Google Scholar]
  32. Martinez-Salas E., Ramos R., Lafuente E., Lopez de Quinto S. 2001; Functional interactions in internal translation initiation directed by viral and cellular IRES elements. J Gen Virol 82:973–984
    [Google Scholar]
  33. Meerovitch K., Svitkin Y. V., Lee H. S., Lejbkowicz F., Kenan D. J., Chan E. K. L., Agol V. I., Keene J. D., Sonenberg N. 1993; La autoantigen enhances and corrects aberrant translation of poliovirus RNA in reticulocyte lysate. J Virol 67:3798–3807
    [Google Scholar]
  34. Mellits K. H., Peery T., Manche L., Robertson H. D., Mathews M. B. 1990; Removal of double-stranded contaminants from RNA transcripts: synthesis of adenovirus VA RNRI from a T7 vector. Nucleic Acids Res 18:5401–5406 [CrossRef]
    [Google Scholar]
  35. Meredith J. M., Rohll J. B., Almond J. W., Evans D. J. 1999; Similar interactions of the poliovirus and rhinovirus 3D polymerase with the 3′ untranslated region of rhinovirus 14. J Virol 73:9952–9958
    [Google Scholar]
  36. Molla A., Paul A. V., Wimmer E. 1991; Cell-free, de novo synthesis of poliovirus. Science 254:1647–1651 [CrossRef]
    [Google Scholar]
  37. Parsley T. B., Towner J. S., Blyn L. B., Ehrenfeld E., Semler B. L. 1997; Poly(rC) binding protein 2 forms a ternary complex with the 5′-terminal sequences of poliovirus RNA and the viral 3CD proteinase. RNA 3:1124–1134
    [Google Scholar]
  38. Pilipenko E. V., Pestova T. V., Kolupaeva V. G., Khitrina E. V., Poperechnaya A. N., Agol V. I., Hellen C. U. 2000; A cell cycle-dependent protein serves as a template-specific translation initiation factor. Genes Dev 14:2028–2045
    [Google Scholar]
  39. Poulet H., Brunet S., Leroy V., Chappuis G. 2005; Immunisation with a combination of two complementary feline calicivirus strains induces a broad cross-protection against heterologous challenges. Vet Microbiol 106:17 [CrossRef]
    [Google Scholar]
  40. Radford A. D., Sommerville L., Ryvar R., Cox M. B., Johnson D. R., Dawson S., Gaskell R. M. 2001; Endemic infection of a cat colony with a feline calicivirus closely related to an isolate used in live attenuated vaccines. Vaccine 19:4358–4362 [CrossRef]
    [Google Scholar]
  41. Rightsel W. A., Dice J. R., McAlpine R. J., Timm E. A., McLean I. W. Jr, Dixon G. J., Schabel F. M., Jr. 1961; Antiviral effect of guanidine. Science 134:558–559 [CrossRef]
    [Google Scholar]
  42. Sambrook J., Russell D. W. 2001 Molecular Cloning: a Laboratory Manual , 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  43. Shi S. T., Lai M. M. 2005; Viral and cellular proteins involved in coronavirus replication. Curr Top Microbiol Immunol 287:95–131
    [Google Scholar]
  44. Singh R., Valcarcel J., Green M. R. 1995; Distinct binding specificities and functions of higher eukaryotic polypyrimidine tract-binding proteins. Science 268:1173–1176 [CrossRef]
    [Google Scholar]
  45. Sosnovtsev S., Green K. Y. 1995; RNA transcripts derived from a cloned full-length copy of the feline calicivirus genome do not require VPg for infectivity. Virology 210:383–390 [CrossRef]
    [Google Scholar]
  46. Stoneley M., Willis A. E. 2004; Cellular internal ribosome entry segments: structures, trans-acting factors and regulation of gene expression. Oncogene 23:3200–3207 [CrossRef]
    [Google Scholar]
  47. Treiber D. K., Williamson J. R. 2001; Beyond kinetic traps in RNA folding. Curr Opin Struct Biol 11:309 [CrossRef]
    [Google Scholar]
  48. van Duynhoven Y. T., de Jager C. M., Kortbeek L. M., Vennema H., Koopmans M. P., van Leusden F., van der Poel W. H., van den Broek M. J. 2005; A one-year intensified study of outbreaks of gastroenteritis in The Netherlands. Epidemiol Infect 133:9–21 [CrossRef]
    [Google Scholar]
  49. Wei L., Huhn J. S., Mory A., Pathak H. B., Sosnovtsev S. V., Green K. Y., Cameron C. E. 2001; Proteinase-polymerase precursor as the active form of feline calicivirus RNA-dependent RNA polymerase. J Virol 75:1211–1219 [CrossRef]
    [Google Scholar]
  50. Widdowson M. A., Cramer E. H., Hadley L. 12 other authors 2004; Outbreaks of acute gastroenteritis on cruise ships and on land: identification of a predominant circulating strain of Norovirus –. United States: 2002 J Infect Dis 190:27–36 [CrossRef]
    [Google Scholar]
  51. Wobus C. E., Karst S. M., Thackray L. B. & 7 other authors 2004; Replication of Norovirus in cell culture reveals a tropism for dendritic cells and macrophages. PLoS Biol 2:e432 [CrossRef]
    [Google Scholar]
  52. Xie J., Lee J. A., Kress T. L., Mowry K. L., Black D. L. 2003; Protein kinase A phosphorylation modulates transport of the polypyrimidine tract-binding protein. Proc Natl Acad Sci U S A 100:8776–8781 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82153-0
Loading
/content/journal/jgv/10.1099/vir.0.82153-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error