1887

Abstract

(Umv-H1) is a mycovirus that infects , a fungal pathogen of maize. As was domesticated, it carried with it many associated symbionts, such that the subsequent range expansion and cultivation of maize should have affected maize symbionts' evolutionary history dramatically. Because transmission of Umv-H1 takes place only through cytoplasmic fusion during mating of individuals, the population dynamics of and maize are expected to affect the population structure of the viral symbiont strongly. Here, the impact of changes in the evolutionary history of on that of Umv-H1 was investigated. The high mutation rate of this virus allows inferences to be made about the evolution and divergence of Umv-H1 lineages as a result of the recent changes in geographical and genetic structure. The phylogeographical history and genetic structure of Umv-H1 populations in the USA and Mexico were determined by using analyses of viral nucleotide sequence variation. Infection and recombination frequencies, genetic diversity and rates of neutral evolution were also assessed, to make inferences regarding evolutionary processes underlying the population genetic structure of ancestral and descendent populations. The results suggest that Mexico represents the ancestral population of Umv-H1, from which the virus has been carried with populations into the USA. Thus, the population dynamics of one symbiont represent a major evolutionary force on the co-evolutionary dynamics of symbiotic partners.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82149-0
2006-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/11/3433.html?itemId=/content/journal/jgv/10.1099/vir.0.82149-0&mimeType=html&fmt=ahah

References

  1. Abubakar Z., Ali F., Pinel A., Traoré O., N'Guessan P., Notteghem J.-L., Kimmins F., Konaté G., Fargette D. 2003; Phylogeography of Rice yellow mottle virus in Africa. J Gen Virol 84:733–743 [CrossRef]
    [Google Scholar]
  2. Attoui H., Billoir F., Cantaloube J. F., Biagini P., de Micco P., de Lamballerie X. 2000; Strategies for the sequence determination of viral dsRNA genomes. J Virol Methods 89:147–158 [CrossRef]
    [Google Scholar]
  3. Barnes C. W., Szabo L. J., May G., Groth J. V. 2004; Inbreeding levels of two Ustilago maydis populations. Mycologia 96:1236–1244 [CrossRef]
    [Google Scholar]
  4. Bousalem M., Douzery E. J. P., Fargette D. 2000; High genetic diversity, distant phylogenetic relationships and intraspecies recombination events among natural populations of Yam mosaic virus : a contribution to understanding potyvirus evolution. J Gen Virol 81:243–255
    [Google Scholar]
  5. Bronstein J. L. 1994; Conditional outcomes in mutualistic interactions. Trends Ecol Evol 9:214–217 [CrossRef]
    [Google Scholar]
  6. Day P. R. 1981; Fungal virus populations in corn smut from Connecticut. Mycologia 73:379–391 [CrossRef]
    [Google Scholar]
  7. Fischer G. W., Shaw C. G. 1953; A proposed species concept in the smut fungi, with application to North American species. Phytopathology 43:181–188
    [Google Scholar]
  8. García-Arenal F., Fraile A., Malpica J. M. 2001; Variability and genetic structure of plant virus populations. Annu Rev Phytopathol 39:157–186 [CrossRef]
    [Google Scholar]
  9. Harlan J. R. 1992 Crops and Man , 2nd edn. Madison, WI: American Society of Agronomy;
    [Google Scholar]
  10. Holmes E. C. 2004; The phylogeography of human viruses. Mol Ecol 13:745–756 [CrossRef]
    [Google Scholar]
  11. Huson D. H. 1998; SplitsTree: analyzing and visualizing evolutionary data. Bioinformatics 14:68–73 [CrossRef]
    [Google Scholar]
  12. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp  21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  13. Kang J.-G., Wu J.-C., Bruenn J. A., Park C.-M. 2001; The H1 double-stranded RNA genome of Ustilago maydis virus-H1 encodes a polyprotein that contains structural motifs for capsid polypeptide, papain-like protease, and RNA-dependent RNA polymerase. Virus Res 76:183–189 [CrossRef]
    [Google Scholar]
  14. Kishino H., Hasegawa M. 1989; Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea. J Mol Evol 29:170–179 [CrossRef]
    [Google Scholar]
  15. Koltin Y., Kandel J. S. 1978; Killer phenomenon in Ustilago maydis : the organization of the viral genome. Genetics 88:267–276
    [Google Scholar]
  16. Kumar S., Tamura K., Jakobsen I. B., Nei M. 2001; mega2: molecular evolutionary genetic analysis software. Bioinformatics 17:1244–1245 [CrossRef]
    [Google Scholar]
  17. Kurath G., Garver K. A., Troyer R. M., Emmenegger E. J., Einer-Jensen K., Anderson E. D. 2003; Phylogeography of infectious haematopoietic necrosis virus in North America. J Gen Virol 84:803–814 [CrossRef]
    [Google Scholar]
  18. Li W.-H. 1993; Unbiased estimation of the rates of synonymous and nonsynonymous substitution. J Mol Evol 36:96–99 [CrossRef]
    [Google Scholar]
  19. Li H., Roossinck M. J. 2004; Genetic bottlenecks reduce population variation in an experimental RNA virus population. J Virol 78:10582–10587 [CrossRef]
    [Google Scholar]
  20. Maddison D., Maddison W. 2000 MacClade 4: analysis of phylogeny and character evolution Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  21. Martínez-Espinoza A. D., García-Pedrajas M. D., Gold S. E. 2002; The Ustilaginales as plant pests and model systems. Fungal Genet Biol 35:1–20 [CrossRef]
    [Google Scholar]
  22. Matsuoka Y., Vigouroux Y., Goodman M. M., Sanchez J. G., Buckler E., Doebley J. 2002; A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci U S A 99:6080–6084 [CrossRef]
    [Google Scholar]
  23. Moury B., Morel C., Johansen E., Jacquemond M. 2002; Evidence for diversifying selection in Potato virus Y and in the coat protein of other potyviruses. J Gen Virol 83:2563–2573
    [Google Scholar]
  24. Ohshima K., Yamaguchi Y., Hirota R. & 10 other authors 2002; Molecular evolution of Turnip mosaic virus : evidence of host adaptation, genetic recombination and geographical spread. J Gen Virol 83:1511–1521
    [Google Scholar]
  25. Pamilo P., Bianchi N. O. 1993; Evolution of the Zfx and Zfy genes: rates and interdependence between the genes. Mol Biol Evol 10:271–281
    [Google Scholar]
  26. Posada D., Crandall K. A. 1998; modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818 [CrossRef]
    [Google Scholar]
  27. Powers A. M., Brault A. C., Tesh R. B., Weaver S. C. 2000; Re-emergence of chikungunya and o'nyong-nyong viruses: evidence for distinct geographical lineages and distant evolutionary relationships. J Gen Virol 81:471–479
    [Google Scholar]
  28. Roossinck M. J., Zhang L., Hellwald K.-H. 1999; Rearrangements in the 5′ nontranslated region and phylogenetic analyses of cucumber mosaic virus RNA 3 indicate radial evolution of three subgroups. J Virol 73:6752–6758
    [Google Scholar]
  29. Ruiz-Herrera J., Martínez-Espinoza A. D. 1998; The fungus Ustilago maydis , from the aztec cuisine to the research laboratory. Int Microbiol 1:149–158
    [Google Scholar]
  30. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  31. Sawyer S. A. 1999 geneconv: a computer package for the statistical detection of gene conversion St Louis, MO: Department of Mathematics, Washington University in St Louis;
    [Google Scholar]
  32. Schardl C. L., Leuchtmann A., Chung K.-R., Penny D., Siegel M. R. 1997; Coevolution by common descent of fungal symbionts ( Epichloë spp.) and grass hosts. Mol Biol Evol 14:133–143 [CrossRef]
    [Google Scholar]
  33. Schmitt M. J., Breinig F. 2002; The viral killer system in yeast: from molecular biology to application. FEMS Microbiol Rev 26:257–276 [CrossRef]
    [Google Scholar]
  34. Schneider S., Roessli D., Excoffier L. 2000 arlequin: a software for population genetics data analysisver. 2.000 Geneva: Genetics and Biometry Laboratory, Dept of Anthropology, University of Geneva;
    [Google Scholar]
  35. Seroussi E., Peery T., Ginzberg I., Koltin Y. 1989; Detection of killer-independent dsRNA plasmids in Ustilago maydis by a simple and rapid method of extraction of dsRNA. Plasmid 21:216–225 [CrossRef]
    [Google Scholar]
  36. Slatkin M., Maddison W. P. 1989; A cladistic measure of gene flow inferred from the phylogenies of alleles. Genetics 123:603–613
    [Google Scholar]
  37. Smith B. D. 1995 The Emergence of Agriculture New York: Scientific American Library;
    [Google Scholar]
  38. Swofford D. L. 1999 paup*: phylogenetic analysis using parsimony (*and other methods), ver 4.0b10 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  39. Tamura K., Nei M. 1993; Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526
    [Google Scholar]
  40. Thompson J. N. 1999; The evolution of species interactions. Science 284:2116–2118 [CrossRef]
    [Google Scholar]
  41. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  42. Vives M. C., Rubio L., Galipienso L., Navarro L., Moreno P., Guerri J. 2002; Low genetic variation between isolates of Citrus leaf blotch virus from different host species and of different geographical origins. J Gen Virol 83:2587–2591
    [Google Scholar]
  43. Werren J. H. 1997; Biology of Wolbachia . Annu Rev Entomol 42:587–609 [CrossRef]
    [Google Scholar]
  44. Wickner R. B., Ghabrial S. A., Bruenn J. A., Buck K., Patterson J. L., Stuart K. D., Wang C. C. 2000; Family Totiviridae . In Virus Taxonomy: Seventh Report of the International Committee on Taxonomy of Viruses pp  491–501 Edited by van Regenmortel M. H. V., Fauquet C. M., Bishop D. H. L., Carstens E. B., Estes M. K., Lemon S. M., Maniloff J., Mayo M. A., McGeoch D. J., Pringle C. R., Wickner R. B. San Diego: Academic Press;
    [Google Scholar]
  45. Wright S. 1921; Systems of mating. Genetics 6:111–178
    [Google Scholar]
  46. Wright S. 1931; Evolution in Mendelian populations. Genetics 16:97–159
    [Google Scholar]
  47. Zambino P., Groth J. V., Lukens L., Garton J. R., May G. 1997; Variation at the b mating type locus of Ustilago maydis . Phytopathology 87:1233–1239 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82149-0
Loading
/content/journal/jgv/10.1099/vir.0.82149-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error