1887

Abstract

Natural killer (NK) cells are a major component of the host innate immune defence against various pathogens. Several viruses, including (HIV-1), have developed strategies to evade the NK-cell response. This study was designed to evaluate whether HIV-1 could interfere with the expression of NK cell-activating ligands, specifically the human leukocyte antigen (HLA)-I-like MICA and ULBP molecules that bind NKG2D, an activating receptor expressed by all NK cells. Results show that the HIV-1 Nef protein downmodulates cell-surface expression of MICA, ULBP1 and ULBP2, with a stronger effect on the latter molecule. The activity on MICA and ULBP2 is well conserved in Nef protein variants derived from HIV-1-infected patients. In HIV-1-infected cells, cell-surface expression of NKG2D ligands increased to a higher extent with a Nef-deficient virus compared with wild-type virus. Mutational analysis of Nef showed that NKG2D ligand downmodulation has structural requirements that differ from those of other reported Nef activities, including HLA-I downmodulation. Finally, data demonstrate that Nef expression has functional consequences on NK-cell recognition, causing a decreased susceptibility to NK cell-mediated lysis. These findings provide a novel insight into the mechanisms evolved by HIV-1 to escape from the NK-cell response.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82125-0
2007-01-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/1/242.html?itemId=/content/journal/jgv/10.1099/vir.0.82125-0&mimeType=html&fmt=ahah

References

  1. Arold, S. T. & Baur, A. S. ( 2001; ). Dynamic Nef and Nef dynamics: how structure could explain the complex activities of this small HIV protein. Trends Biochem Sci 26, 356–363.[CrossRef]
    [Google Scholar]
  2. Bauer, S., Groh, V., Wu, J., Steinle, A., Phillips, J. H., Lanier, L. L. & Spies, T. ( 1999; ). Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285, 727–729.[CrossRef]
    [Google Scholar]
  3. Baur, A. ( 2004; ). Functions of the HIV-1 Nef protein. Curr Drug Targets Immune Endocr Metabol Disord 4, 309–313.[CrossRef]
    [Google Scholar]
  4. Bonaparte, M. I. & Barker, E. ( 2003; ). Inability of natural killer cells to destroy autologous HIV-infected T lymphocytes. AIDS 17, 487–494.[CrossRef]
    [Google Scholar]
  5. Carl, S., Greenough, T. C., Krumbiegel, M., Greenberg, M., Skowronski, J., Sullivan, J. L. & Kirchhoff, F. ( 2001; ). Modulation of different human immunodeficiency virus type 1 Nef functions during progression to AIDS. J Virol 75, 3657–3665.[CrossRef]
    [Google Scholar]
  6. Casartelli, N., Di Matteo, G., Argentini, C. & 7 other authors ( 2003a; ). Structural defects and variations in the HIV-1 nef gene from rapid, slow and non-progressor children. AIDS 17, 1291–1301.[CrossRef]
    [Google Scholar]
  7. Casartelli, N., Di Matteo, G., Potesta, M., Rossi, P. & Doria, M. ( 2003b; ). CD4 and major histocompatibility complex class I downregulation by the human immunodeficiency virus type 1 nef protein in pediatric AIDS progression. J Virol 77, 11536–11545.[CrossRef]
    [Google Scholar]
  8. Cerboni, C., Mousavi-Jazi, M., Wakiguchi, H., Carbone, E., Kärre, K. & Söderström, K. ( 2001; ). Synergistic effect of IFN-gamma and human cytomegalovirus protein UL40 in the HLA-E-dependent protection from NK cell-mediated cytotoxicity. Eur J Immunol 31, 2926–2935.[CrossRef]
    [Google Scholar]
  9. Chalupny, N. J., Sutherland, C. L., Lawrence, W. A., Rein-Weston, A. & Cosman, D. ( 2003; ). ULBP4 is a novel ligand for human NKG2D. Biochem Biophys Res Commun 305, 129–135.[CrossRef]
    [Google Scholar]
  10. Chowers, M. Y., Spina, C. A., Kwoh, T. J., Fitch, N. J., Richman, D. D. & Guatelli, J. C. ( 1994; ). Optimal infectivity in vitro of human immunodeficiency virus type 1 requires an intact nef gene. J Virol 68, 2906–2914.
    [Google Scholar]
  11. Cohen, G. B., Gandhi, R. T., Davis, D. M., Mandelboim, O., Chen, B. K., Strominger, J. L. & Baltimore, D. ( 1999; ). The selective downregulation of class I major histocompatibility complex proteins by HIV-1 protects HIV-infected cells from NK cells. Immunity 10, 661–671.[CrossRef]
    [Google Scholar]
  12. Collins, K. L., Chen, B. K., Kalams, S. A., Walker, B. D. & Baltimore, D. ( 1998; ). HIV-1 Nef protein protects infected primary cells against killing by cytotoxic T lymphocytes. Nature 391, 397–401.[CrossRef]
    [Google Scholar]
  13. Cosman, D., Mullberg, J., Sutherland, C. L., Chin, W., Armitage, R., Fanslow, W., Kubin, M. & Chalupny, N. J. ( 2001; ). ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity 14, 123–133.[CrossRef]
    [Google Scholar]
  14. Deacon, N. J., Tsykin, A., Solomon, A. & 17 other authors ( 1995; ). Genomic structure of an attenuated quasi species of HIV-1 from a blood transfusion donor and recipients. Science 270, 988–991.[CrossRef]
    [Google Scholar]
  15. Doms, R. W. & Trono, D. ( 2000; ). The plasma membrane as a combat zone in the HIV battlefield. Genes Dev 14, 2677–2688.[CrossRef]
    [Google Scholar]
  16. Eger, K. A. & Unutmaz, D. ( 2004; ). Perturbation of natural killer cell function and receptors during HIV infection. Trends Microbiol 12, 301–303.[CrossRef]
    [Google Scholar]
  17. Gasser, S., Orsulic, S., Brown, E. J. & Raulet, D. H. ( 2005; ). The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 436, 1186–1190.[CrossRef]
    [Google Scholar]
  18. Gervaix, A., West, D., Leoni, L. M., Richman, D. D., Wong-Staal, F. & Corbeil, J. ( 1997; ). A new reporter cell line to monitor HIV infection and drug susceptibility in vitro. Proc Natl Acad Sci U S A 94, 4653–4658.[CrossRef]
    [Google Scholar]
  19. Geyer, M., Fackler, O. T. & Peterlin, B. M. ( 2001; ). Structure–function relationships in HIV-1 Nef. EMBO Rep 2, 580–585.[CrossRef]
    [Google Scholar]
  20. Groh, V., Wu, J., Yee, C. & Spies, T. ( 2002; ). Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 419, 734–738.[CrossRef]
    [Google Scholar]
  21. Grzesiek, S., Stahl, S. J., Wingfield, P. T. & Bax, A. ( 1996; ). The CD4 determinant for downregulation by HIV-1 Nef directly binds to Nef. Mapping of the Nef binding surface by NMR. Biochemistry 35, 10256–10261.[CrossRef]
    [Google Scholar]
  22. Hanna, Z., Kay, D. G., Rebai, N., Guimond, A., Jothy, S. & Jolicoeur, P. ( 1998; ). Nef harbors a major determinant of pathogenicity for an AIDS-like disease induced by HIV-1 in transgenic mice. Cell 95, 163–175.[CrossRef]
    [Google Scholar]
  23. Kirchhoff, F., Greenough, T. C., Brettler, D. B., Sullivan, J. L. & Desrosiers, R. C. ( 1995; ). Brief report: absence of intact nef sequences in a long-term survivor with nonprogressive HIV-1 infection. N Engl J Med 332, 228–232.[CrossRef]
    [Google Scholar]
  24. Lanier, L. L. ( 2005; ). NK cell recognition. Annu Rev Immunol 23, 225–274.[CrossRef]
    [Google Scholar]
  25. Le Gall, S., Erdtmann, L., Benichou, S., Berlioz-Torrent, C., Liu, L., Benarous, R., Heard, J. M. & Schwartz, O. ( 1998; ). Nef interacts with the mu subunit of clathrin adaptor complexes and reveals a cryptic sorting signal in MHC I molecules. Immunity 8, 483–495.[CrossRef]
    [Google Scholar]
  26. Liu, X., Schrager, J. A., Lange, G. D. & Marsh, J. W. ( 2001; ). HIV Nef-mediated cellular phenotypes are differentially expressed as a function of intracellular Nef concentrations. J Biol Chem 276, 32763–32770.[CrossRef]
    [Google Scholar]
  27. Lodoen, M. B. & Lanier, L. L. ( 2005; ). Viral modulation of NK cell immunity. Nat Rev Microbiol 3, 59–69.[CrossRef]
    [Google Scholar]
  28. Maier, R., Bartolomè-Rodrìguez, M. M., Moulon, C., Weltzien, H. U. & Meyerhans, A. ( 2000; ). Kinetics of CXCR4 and CCR5 up-regulation and human immunodeficiency virus expansion after antigenic stimulation of primary CD4(+) T lymphocytes. Blood 96, 1853–1856.
    [Google Scholar]
  29. McMichael, A. ( 1998; ). T cell responses and viral escape. Cell 93, 673–676.[CrossRef]
    [Google Scholar]
  30. Pende, D., Cantoni, C., Rivera, P. & 8 other authors ( 2001; ). Role of NKG2D in tumor cell lysis mediated by human NK cells: cooperation with natural cytotoxicity receptors and capability of recognizing tumors of nonepithelial origin. Eur J Immunol 31, 1076–1086.[CrossRef]
    [Google Scholar]
  31. Peterlin, B. M. & Trono, D. ( 2003; ). Hide, shield and strike back: how HIV-infected cells avoid immune eradication. Nat Rev Immunol 3, 97–107.[CrossRef]
    [Google Scholar]
  32. Pross, H. F., Callerwaert, D. & Rubin, P. ( 1986; ). Assay for NK cell cytotoxicity – their values and pitfalls. In Immunobiology of Natural Killer Cells, pp. 2–20. Edited by E. Lotzova & R. B. Herberman. Boca Raton, FL: CRC Press.
  33. Raulet, D. H. ( 2003; ). Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol 3, 781–790.[CrossRef]
    [Google Scholar]
  34. Robertson, M. J., Cochran, K. J., Cameron, C., Le, J. M., Tantravahi, R. & Ritz, J. ( 1996; ). Characterization of a cell line, NKL, derived from an aggressive human natural killer cell leukemia. Exp Hematol 24, 406–415.
    [Google Scholar]
  35. Rölle, A., Mousavi-Jazi, M., Eriksson, M., Odeberg, J., Söderberg-Nauclér, C., Cosman, D., Karre, K. & Cerboni, C. ( 2003; ). Effects of human cytomegalovirus infection on ligands for the activating NKG2D receptor of NK cells: up-regulation of UL16-binding protein (ULBP)1 and ULBP2 is counteracted by the viral UL16 protein. J Immunol 171, 902–908.[CrossRef]
    [Google Scholar]
  36. Salih, H. R., Antropius, H., Gieseke, F., Lutz, S. Z., Kanz, L., Rammensee, H. G. & Steinle, A. ( 2003; ). Functional expression and release of ligands for the activating immunoreceptor NKG2D in leukemia. Blood 102, 1389–1396.[CrossRef]
    [Google Scholar]
  37. Schrager, J. A. & Marsh, J. W. ( 1999; ). HIV-1 Nef increases T cell activation in a stimulus-dependent manner. Proc Natl Acad Sci U S A 96, 8167–8172.[CrossRef]
    [Google Scholar]
  38. Schwartz, O., Riviere, Y., Heard, J. M. & Danos, O. ( 1993; ). Reduced cell surface expression of processed human immunodeficiency virus type 1 envelope glycoprotein in the presence of Nef. J Virol 67, 3274–3280.
    [Google Scholar]
  39. Welte, S. A., Sinzger, C., Lutz, S. Z., Singh-Jasuja, H., Sampaio, K. L., Eknigk, U., Rammensee, H. G. & Steinle, A. ( 2003; ). Selective intracellular retention of virally induced NKG2D ligands by the human cytomegalovirus UL16 glycoprotein. Eur J Immunol 33, 194–203.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82125-0
Loading
/content/journal/jgv/10.1099/vir.0.82125-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error