1887

Abstract

The influenza A virus nucleoprotein (NP) and matrix protein are major targets for human virus-specific cytotoxic T-lymphocyte (CTL) responses. Most of the CTL epitopes that have been identified so far are conserved. However, sequence variation in CTL epitopes of the NP has recently been demonstrated to be associated with escape from virus-specific CTLs. To assess the extent of variation in CTL epitopes during influenza A virus evolution, 304 CTL clones derived from six study subjects were obtained with specificity for an influenza A/H3N2 virus isolated in 1981. Subsequently, the frequency of the CTL clones that failed to recognize a more recent influenza virus strain isolated in 2003 was determined. In four of six study subjects, CTLs were found to be specific for variable epitopes, accounting for 2.6 % of all CTL clones. For some of these CTL clones, the minimal epitope and the residues responsible for abrogation of T-cell recognition were identified.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82120-0
2007-02-01
2019-08-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/2/530.html?itemId=/content/journal/jgv/10.1099/vir.0.82120-0&mimeType=html&fmt=ahah

References

  1. Andersen, M. H., Tan, L., Sondergaard, I., Zeuthen, J., Elliott, T. & Haurum, J. S. ( 2000; ). Poor correspondence between predicted and experimental binding of peptides to class I MHC molecules. Tissue Antigens 55, 519–531.[CrossRef]
    [Google Scholar]
  2. Berkhoff, E. G., Boon, A. C., Nieuwkoop, N. J., Fouchier, R. A., Sintnicolaas, K., Osterhaus, A. D. & Rimmelzwaan, G. F. ( 2004; ). A mutation in the HLA-B*2705-restricted NP383–391 epitope affects the human influenza A virus-specific cytotoxic T-lymphocyte response in vitro. J Virol 78, 5216–5222.[CrossRef]
    [Google Scholar]
  3. Berkhoff, E. G., de Wit, E., Geelhoed-Mieras, M. M., Boon, A. C., Symons, J., Fouchier, R. A., Osterhaus, A. D. & Rimmelzwaan, G. F. ( 2005; ). Functional constraints of influenza A virus epitopes limit escape from cytotoxic T lymphocytes. J Virol 79, 11239–11246.[CrossRef]
    [Google Scholar]
  4. Boon, A. C., de Mutsert, G., Graus, Y. M., Fouchier, R. A., Sintnicolaas, K., Osterhaus, A. D. & Rimmelzwaan, G. F. ( 2002a; ). The magnitude and specificity of influenza A virus-specific cytotoxic T-lymphocyte responses in humans is related to HLA-A and -B phenotype. J Virol 76, 582–590.[CrossRef]
    [Google Scholar]
  5. Boon, A. C., de Mutsert, G., Graus, Y. M., Fouchier, R. A., Sintnicolaas, K., Osterhaus, A. D. & Rimmelzwaan, G. F. ( 2002b; ). Sequence variation in a newly identified HLA-B35-restricted epitope in the influenza A virus nucleoprotein associated with escape from cytotoxic T lymphocytes. J Virol 76, 2567–2572.[CrossRef]
    [Google Scholar]
  6. Boon, A. C., de Mutsert, G., van Baarle, D., Smith, D. J., Lapedes, A. S., Fouchier, R. A., Sintnicolaas, K., Osterhaus, A. D. & Rimmelzwaan, G. F. ( 2004; ). Recognition of homo- and heterosubtypic variants of influenza A viruses by human CD8+ T lymphocytes. J Immunol 172, 2453–2460.[CrossRef]
    [Google Scholar]
  7. DiBrino, M., Tsuchida, T., Turner, R. V., Parker, K. C., Coligan, J. E. & Biddison, W. E. ( 1993; ). HLA-A1 and HLA-A3 T cell epitopes derived from influenza virus proteins predicted from peptide binding motifs. J Immunol 151, 5930–5935.
    [Google Scholar]
  8. DiBrino, M., Parker, K. C., Margulies, D. H., Shiloach, J., Turner, R. V., Biddison, W. E. & Coligan, J. E. ( 1994; ). The HLA-B14 peptide binding site can accommodate peptides with different combinations of anchor residues. J Biol Chem 269, 32426–32434.
    [Google Scholar]
  9. DiBrino, M., Parker, K. C., Margulies, D. H., Shiloach, J., Turner, R. V., Biddison, W. E. & Coligan, J. E. ( 1995; ). Identification of the peptide binding motif for HLA-B44, one of the most common HLA-B alleles in the Caucasian population. Biochemistry 34, 10130–10138.[CrossRef]
    [Google Scholar]
  10. Gianfrani, C., Oseroff, C., Sidney, J., Chesnut, R. W. & Sette, A. ( 2000; ). Human memory CTL response specific for influenza A virus is broad and multispecific. Hum Immunol 61, 438–452.[CrossRef]
    [Google Scholar]
  11. Gog, J. R., Rimmelzwaan, G. F., Osterhaus, A. D. & Grenfell, B. T. ( 2003; ). Population dynamics of rapid fixation in cytotoxic T lymphocyte escape mutants of influenza A. Proc Natl Acad Sci U S A 100, 11143–11147.[CrossRef]
    [Google Scholar]
  12. Holmes, E. C., Ghedin, E., Miller, N., Taylor, J., Bao, Y., St George, K., Grenfell, B. T., Salzberg, S. L., Fraser, C. M. & other authors ( 2005; ). Whole-genome analysis of human influenza A virus reveals multiple persistent lineages and reassortment among recent H3N2 viruses. PLoS Biol 3, e300.[CrossRef]
    [Google Scholar]
  13. Jameson, J., Cruz, J., Terajima, M. & Ennis, F. A. ( 1999; ). Human CD8+ and CD4+ T lymphocyte memory to influenza A viruses of swine and avian species. J Immunol 162, 7578–7583.
    [Google Scholar]
  14. Korber, B. ( 2001; ). HIV sequence signatures and similarities. In Computational and Evolutionary Analysis of HIV Molecular Sequences, pp. 55–72. Edited by A. G. Rodrigo & G. H. Learn, Jr. Dordrecht, Netherlands: Kluwer Academic.
  15. Macken, C., Lu, H., Goodman, J. & Boykin, L. ( 2001; ). The value of a database in surveillance and vaccine selection. In Options for the Control of Influenza IV, pp. 103–106. Edited by A. D. M. E. Osterhaus, N. Cox & A. W. Hampson. Amsterdam: Elsevier Science.
  16. Man, S., Newberg, M. H., Crotzer, V. L., Luckey, C. J., Williams, N. S., Chen, Y., Huczko, E. L., Ridge, J. P. & Engelhard, V. H. ( 1995; ). Definition of a human T cell epitope from influenza A non-structural protein 1 using HLA-A2.1 transgenic mice. Int Immunol 7, 597–605.[CrossRef]
    [Google Scholar]
  17. Marsh, S. G. E., Parham, P. & Barber, L. D. ( 2000; ). The HLA FactsBook. London: Academic Press.
  18. Nei, M. & Gojobori, T. ( 1986; ). Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3, 418–426.
    [Google Scholar]
  19. Ota, T. & Nei, M. ( 1994; ). Variance and covariances of the numbers of synonymous and nonsynonymous substitutions per site. Mol Biol Evol 11, 613–619.
    [Google Scholar]
  20. Parker, C. E. & Gould, K. G. ( 1996; ). Influenza A virus - a model for viral antigen presentation to cytotoxic T lymphocytes. Semin Virol 7, 61–73.[CrossRef]
    [Google Scholar]
  21. Rimmelzwaan, G. F., Berkhoff, E. G., Nieuwkoop, N. J., Fouchier, R. A. & Osterhaus, A. D. ( 2004a; ). Functional compensation of a detrimental amino acid substitution in a cytotoxic-T-lymphocyte epitope of influenza A viruses by comutations. J Virol 78, 8946–8949.[CrossRef]
    [Google Scholar]
  22. Rimmelzwaan, G. F., Boon, A. C., Voeten, J. T., Berkhoff, E. G., Fouchier, R. A. & Osterhaus, A. D. ( 2004b; ). Sequence variation in the influenza A virus nucleoprotein associated with escape from cytotoxic T lymphocytes. Virus Res 103, 97–100.[CrossRef]
    [Google Scholar]
  23. Rimmelzwaan, G. F., Berkhoff, E. G. M., Nieuwkoop, N. J., Smith, D. J., Fouchier, R. A M. & Osterhaus, A. D. M. E. ( 2005; ). Full restoration of viral fitness by multiple compensatory co-mutations in the nucleoprotein of influenza A virus cytotoxic T-lymphocyte escape mutants. J Gen Virol 86, 1801–1805.[CrossRef]
    [Google Scholar]
  24. Rohrlich, P. S., Cardinaud, S., Firat, H., Lamari, M., Briand, P., Escriou, N. & Lemonnier, F. A. ( 2003; ). HLA-B*0702 transgenic, H-2KbDb double-knockout mice: phenotypical and functional characterization in response to influenza virus. Int Immunol 15, 765–772.[CrossRef]
    [Google Scholar]
  25. Toebes, M., Coccoris, M., Bins, A., Rodenko, B., Gomez, R., Nieuwkoop, N. J., van de Kasteele, W., Rimmelzwaan, G. F., Haanen, J. B. & other authors ( 2006; ). Design and use of conditional MHC class I ligands. Nat Med 12, 246–251.[CrossRef]
    [Google Scholar]
  26. Townsend, A. R. & Skehel, J. J. ( 1984; ). The influenza A virus nucleoprotein gene controls the induction of both subtype specific and cross-reactive cytotoxic T cells. J Exp Med 160, 552–563.[CrossRef]
    [Google Scholar]
  27. Townsend, A. R., Rothbard, J., Gotch, F. M., Bahadur, G., Wraith, D. & McMichael, A. J. ( 1986; ). The epitopes of influenza nucleoprotein recognized by cytotoxic T lymphocytes can be defined with short synthetic peptides. Cell 44, 959–968.[CrossRef]
    [Google Scholar]
  28. Voeten, J. T., Bestebroer, T. M., Nieuwkoop, N. J., Fouchier, R. A., Osterhaus, A. D. & Rimmelzwaan, G. F. ( 2000; ). Antigenic drift in the influenza A virus (H3N2) nucleoprotein and escape from recognition by cytotoxic T lymphocytes. J Virol 74, 6800–6807.[CrossRef]
    [Google Scholar]
  29. Wedemeyer, H., Mizukoshi, E., Davis, A. R., Bennink, J. R. & Rehermann, B. ( 2001; ). Cross-reactivity between hepatitis C virus and influenza A virus determinant-specific cytotoxic T cells. J Virol 75, 11392–11400.[CrossRef]
    [Google Scholar]
  30. Yewdell, J. W., Bennink, J. R., Smith, G. L. & Moss, B. ( 1985; ). Influenza A virus nucleoprotein is a major target antigen for cross-reactive anti-influenza A virus cytotoxic T lymphocytes. Proc Natl Acad Sci U S A 82, 1785–1789.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82120-0
Loading
/content/journal/jgv/10.1099/vir.0.82120-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error