Identification of -inducible genes in mouse brain and characterization of GARG39/IFIT2 as a microtubule-associated protein Free

Abstract

Several mouse central nervous system genes have been identified that are differentially regulated during (JEV) infection, including those which have not been reported to be induced by any other neurotropic virus. Interestingly, 80 % of JEV-inducible genes identified in this study are also induced by , indicating activation of common host signalling pathways by these two viruses, despite their diverse life cycles. One of these, the glucocorticoid attenuated response gene 39 (GARG39, also known as IFIT2, ISG54 and MuP54) was characterized further. It was demonstrated that GARG39 protein interacts with microtubules , co-localizes with -tubulin and is enriched in the mitotic spindle of non-neuronal cells undergoing mitosis. While GARG39 was known for a long time as an inflammation-inducible glucocorticoid attenuated protein, its identification as a microtubule-associated protein in this study suggests a possible role for this protein in cell proliferation, virion assembly/transport and microtubule dynamics.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82107-0
2006-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/11/3285.html?itemId=/content/journal/jgv/10.1099/vir.0.82107-0&mimeType=html&fmt=ahah

References

  1. Ando K., Nagano T., Nakamura A., Konno D., Yagi H., Sato M. 2005; Expression and characterization of disulfide bond use of oligomerized A2-Pancortins: extracellular matrix constituents in the developing brain. Neuroscience 133:947–957 [CrossRef]
    [Google Scholar]
  2. Armstrong R. A., Kerty E., Skullerud K., Cairns N. J. 2005; Neuropathological changes in ten cases of neuronal intermediate filament inclusion disease (NIFID): a study using alpha-internexin immunohistochemistry and principal components analysis (PCA). J Neural Transm (in press). doi:10.1007/s00702-005-0387-0
    [Google Scholar]
  3. Bommer U. A., Thiele B. J. 2004; The translationally controlled tumour protein (TCTP). Int J Biochem Cell Biol 36:379–385 [CrossRef]
    [Google Scholar]
  4. Booth S., Bowman C., Baumgartner R., Sorenson G., Robertson C., Coulthart M., Phillipson C., Somorja R. 2004; Identification of central nervous system genes involved in the host response to the scrapie agent during preclinical and clinical infection. J Gen Virol 85:3459–3471 [CrossRef]
    [Google Scholar]
  5. Brown V., Jin P., Ceman S. 9 other authors 2001; Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in fragile X syndrome. Cell 107:477–487 [CrossRef]
    [Google Scholar]
  6. Chiou C.-T., Hu C.-A., Chen P.-H., Liao C.-L., Lin Y.-L., Wang J.-J. 2003; Association of Japanese encephalitis virus NS3 protein with microtubules and tumour susceptibility gene 101 (TSG101) protein. J Gen Virol 84:2795–2805 [CrossRef]
    [Google Scholar]
  7. Danielson P. E., Forss-Petter S., Battenberg E. L., deLecea L., Bloom F. E., Sutcliffe J. G. 1994; Four structurally distinct neuron-specific olfactomedin-related glycoproteins produced by differential promoter utilization and alternative mRNA splicing from a single gene. J Neurosci Res 38:468–478 [CrossRef]
    [Google Scholar]
  8. Dickson D. W. 1997; The pathogenesis of senile plaques. J Neuropathol Exp Neurol 56:321–339 [CrossRef]
    [Google Scholar]
  9. Ding J., Valle A., Allen E., Wang W., Nardine T., Zhang Y., Ping L., Yang Y. 2006; Microtubule-associated protein 8 contains two microtubule binding sites. Biochem Biophys Res Commun 339:172–179 [CrossRef]
    [Google Scholar]
  10. Drysdale B. E., Howard D. L., Johnson R. J. 1996; Identification of a lipopolysaccharide inducible transcription factor in murine macrophages. Mol Immunol 33:989–998 [CrossRef]
    [Google Scholar]
  11. Greber U. F., Way M. 2006; Superhighway to virus infection. Cell 124:741–754 [CrossRef]
    [Google Scholar]
  12. Gruslin E., Moisan S., St-Pierre Y., Desforges M., Talbot P. J. 2005; Transcriptome profile within the mouse central nervous system and activation of myelin-reactive T cells following murine coronavirus infection. J Neuroimmunol 162:60–70 [CrossRef]
    [Google Scholar]
  13. Hoffner G., Kahlem P., Djian P. 2002; Perinuclear localization of huntingtin as a consequence of its binding to microtubules through an interaction with β-tubulin: relevance to Huntington's disease. J Cell Sci 115:941–948
    [Google Scholar]
  14. Johnston C., Jiang W., Chu T., Levine B. 2001; Identification of genes involved in the host response to neurovirulent alphavirus infection. J Virol 75:10431–10445 [CrossRef]
    [Google Scholar]
  15. Koh W. L., Ng M. L. 2005; Molecular mechanisms of West Nile virus pathogenesis in brain cell. Emerg Infect Dis 11:629–632 [CrossRef]
    [Google Scholar]
  16. Labrada L., Liang X. H., Zheng W., Johnston C., Levine B. 2002; Age-dependent resistance to lethal alphavirus encephalitis in mice: analysis of gene expression in the central nervous system and identification of a novel interferon-inducible protective gene, mouse ISG12. J Virol 76:11688–11703 [CrossRef]
    [Google Scholar]
  17. Lewis J., McGowan E., Rockwood J. 15 other authors 2000; Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nat Genet 25:402–405 [CrossRef]
    [Google Scholar]
  18. Nguyen T., Hu T., Widney Y., Mar R. A., Smith J. B. 2002; Murine GBP-5, a new member of the murine guanylate-binding protein family, is coordinately regulated with other GBPs in vivo and in vitro . J Interferon Cytokine Res 22:899–909 [CrossRef]
    [Google Scholar]
  19. Palmieri F. 2004; The mitochondrial transporter family (SLC25): physiological and pathological implications. Eur J Physiol 447:689–709 [CrossRef]
    [Google Scholar]
  20. Prosniak M., Hooper D. C., Dietzschold B., Koprowski H. 2001; Effect of rabies virus infection on gene expression in mouse brain. Proc Natl Acad Sci U S A 98:2758–2763 [CrossRef]
    [Google Scholar]
  21. Radtke K., Dohner K., Sodeik B. 2006; Viral interactions with the cytoskeleton: a hitchhiker's guide to the cell. Cell Microbiol 8:387–400 [CrossRef]
    [Google Scholar]
  22. Reddy T. R., Li X., Jones Y., Ellisman M. H., Ching G. Y., Liem R. K., Wong-Staal F. 1998; Specific interaction of HTLV tax protein and a human type IV neuronal intermediate filament protein. Proc Natl Acad Sci U S A 95:702–707 [CrossRef]
    [Google Scholar]
  23. Saha S., Rangarajan P. N. 2003; Common host genes are activated in mouse brain by Japanese encephalitis and rabies viruses. J Gen Virol 84:1729–1735 [CrossRef]
    [Google Scholar]
  24. Saha S., Murthy S., Rangarajan P. N. 2006; Identification and characterization of a virus-inducible non-coding RNA in mouse brain. J Gen Virol 87:1991–1995 [CrossRef]
    [Google Scholar]
  25. Sarkar S. N., Sen G. C. 2004; Novel functions of proteins encoded by viral stress-inducible genes. Pharmacol Ther 103:245–259 [CrossRef]
    [Google Scholar]
  26. Smith J. B., Herschman H. R. 1995; Glucocorticoid-attenuated response genes encode intercellular mediators, including a new C-X-C chemokine. J Biol Chem 270:16756–16765 [CrossRef]
    [Google Scholar]
  27. Smith J. B., Herschman H. R. 1996; The glucocorticoid attenuated response genes GARG-16, GARG-39, and GARG-49/IRG2 encode inducible proteins containing multiple tetratricopeptide repeat domains. Arch Biochem Biophys 330:290–300 [CrossRef]
    [Google Scholar]
  28. Smith J. B., Herschman H. R. 2004; Targeted identification of glucocorticoid-attenuated response genes: in vitro and in vivo models. Proc Am Thorac Soc 1:275–281 [CrossRef]
    [Google Scholar]
  29. Venter M., Myers T. G., Wilson M. A., Kindt T. J., Paweska J. T., Burt F. J., Leman P. A., Swanepoel R. 2005; Gene expression in mice infected with West Nile virus strains of different neurovirulence. Virology 342:119–140 [CrossRef]
    [Google Scholar]
  30. Wang J., Campbell I. L. 2005; Innate STAT1-dependent genomic response of neurons to the antiviral cytokine alpha interferon. J Virol 79:8295–8302 [CrossRef]
    [Google Scholar]
  31. Xu A., Bellamy A. R., Taylor J. A. 1999; Expression of translationally controlled tumour protein is regulated by calcium at both the transcriptional and post-transcriptional level. Biochem J 342:683–689 [CrossRef]
    [Google Scholar]
  32. Young K. G., Pinheiro B., Kothary R. 2006; A Bpag1 isoform involved in cytoskeletal organization surrounding the nucleus. Exp Cell Res 312:121–134 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82107-0
Loading
/content/journal/jgv/10.1099/vir.0.82107-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed