1887

Abstract

The Epstein–Barr virus (EBV) nuclear antigen 2 (EBNA2) gene product is the key regulator of the latent genes of EBV and essential for EBV-mediated transformation of human primary B cells. Viral mutants were constructed carrying a deletion of the EBNA2 conserved region 4 (CR4). Primary resting B cells infected with the ΔCR4-EBNA2 mutant virus were dramatically impaired for B cell transformation. Lymphoblastoid cell lines (LCLs) established with this mutant EBV revealed a prolonged population doubling time when cells were cultivated at low cell densities, which are not critical for wild-type-infected cells. Low-level spontaneous cell death occurred when the cells were cultivated at suboptimal cell densities. The phenotype of B cells and LCLs infected with the ΔCR4-EBNA2 mutant virus indicated that the CR4 region of EBNA2 specifically contributes to the viability of the cells rather than affecting cell division rates.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82105-0
2006-11-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/11/3169.html?itemId=/content/journal/jgv/10.1099/vir.0.82105-0&mimeType=html&fmt=ahah

References

  1. Barth, S., Liss, M., Voss, M. D., Dobner, T., Fischer, U., Meister, G. & Grasser, F. A. ( 2003; ). Epstein–Barr virus nuclear antigen 2 binds via its methylated arginine-glycine repeat to the survival motor neuron protein. J Virol 77, 5008–5013.[CrossRef]
    [Google Scholar]
  2. Ben-Bassat, H., Goldblum, N., Mitrani, S. & 7 other authors ( 1977; ). Establishment in continuous culture of a new type of lymphocyte from a ‘Burkitt like’ malignant lymphoma (line DG-75). Int J Cancer 19, 27–33.[CrossRef]
    [Google Scholar]
  3. Cherepanov, P. P. & Wackernagel, W. ( 1995; ). Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158, 9–14.[CrossRef]
    [Google Scholar]
  4. Cohen, J. I., Wang, F., Mannick, J. & Kieff, E. ( 1989; ). Epstein–Barr virus nuclear protein 2 is a key determinant of lymphocyte transformation. Proc Natl Acad Sci U S A 86, 9558–9562.[CrossRef]
    [Google Scholar]
  5. Cohen, J. I., Wang, F. & Kieff, E. ( 1991; ). Epstein–Barr virus nuclear protein 2 mutations define essential domains for transformation and transactivation. J Virol 65, 2545–2554.
    [Google Scholar]
  6. Datsenko, K. A. & Wanner, B. L. ( 2000; ). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97, 6640–6645.[CrossRef]
    [Google Scholar]
  7. Delecluse, H. J., Hilsendegen, T., Pich, D., Zeidler, R. & Hammerschmidt, W. ( 1998; ). Propagation and recovery of intact, infectious Epstein–Barr virus from prokaryotic to human cells. Proc Natl Acad Sci U S A 95, 8245–8250.[CrossRef]
    [Google Scholar]
  8. Engler-Blum, G., Meier, M., Frank, J. & Muller, G. A. ( 1993; ). Reduction of background problems in nonradioactive Northern and Southern blot analyses enables higher sensitivity than 32P-based hybridizations. Anal Biochem 210, 235–244.[CrossRef]
    [Google Scholar]
  9. Farrell, C. J., Lee, J. M., Shin, E. C., Cebrat, M., Cole, P. A. & Hayward, S. D. ( 2004; ). Inhibition of Epstein–Barr virus-induced growth proliferation by a nuclear antigen EBNA2-TAT peptide. Proc Natl Acad Sci U S A 101, 4625–4630.[CrossRef]
    [Google Scholar]
  10. Graham, F. L., Smiley, J., Russell, W. C. & Nairn, R. ( 1977; ). Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 36, 59–74.[CrossRef]
    [Google Scholar]
  11. Hammerschmidt, W. & Sugden, B. ( 1989; ). Genetic analysis of immortalizing functions of Epstein–Barr virus in human B lymphocytes. Nature 340, 393–397.[CrossRef]
    [Google Scholar]
  12. Henkel, T., Ling, P. D., Hayward, S. D. & Peterson, M. G. ( 1994; ). Mediation of Epstein–Barr virus EBNA2 transactivation by recombination signal-binding protein J kappa. Science 265, 92–95.[CrossRef]
    [Google Scholar]
  13. Horan, P. K., Melnicoff, M. J., Jensen, B. D. & Slezak, S. E. ( 1990; ). Fluorescent cell labeling for in vivo and in vitro cell tracking. Methods Cell Biol 33, 469–490.
    [Google Scholar]
  14. Hsieh, J. J. & Hayward, S. D. ( 1995; ). Masking of the CBF1/RBPJ kappa transcriptional repression domain by Epstein–Barr virus EBNA2. Science 268, 560–563.[CrossRef]
    [Google Scholar]
  15. Hsieh, J. J., Zhou, S., Chen, L., Young, D. B. & Hayward, S. D. ( 1999; ). CIR, a corepressor linking the DNA binding factor CBF1 to the histone deacetylase complex. Proc Natl Acad Sci U S A 96, 23–28.[CrossRef]
    [Google Scholar]
  16. Janz, A., Oezel, M., Kurzeder, C., Mautner, J., Pich, D., Kost, M., Hammerschmidt, W. & Delecluse, H. J. ( 2000; ). Infectious Epstein–Barr virus lacking major glycoprotein BLLF1 (gp350/220) demonstrates the existence of additional viral ligands. J Virol 74, 10142–10152.[CrossRef]
    [Google Scholar]
  17. Kao, H. Y., Ordentlich, P., Koyano-Nakagawa, N., Tang, Z., Downes, M., Kintner, C. R., Evans, R. M. & Kadesch, T. ( 1998; ). A histone deacetylase corepressor complex regulates the notch signal transduction pathway. Genes Dev 12, 2269–2277.[CrossRef]
    [Google Scholar]
  18. Kavathas, P., Bach, F. H. & DeMars, R. ( 1980; ). Gamma ray-induced loss of expression of HLA and glyoxalase I alleles in lymphoblastoid cells. Proc Natl Acad Sci U S A 77, 4251–4255.[CrossRef]
    [Google Scholar]
  19. Kelly, G. L., Milner, A. E., Tierney, R. J., Croom-Carter, D. S., Altmann, M., Hammerschmidt, W., Bell, A. I. & Rickinson, A. B. ( 2005; ). Epstein–Barr virus nuclear antigen 2 (EBNA2) gene deletion is consistently linked with EBNA3A, -3B, and -3C expression in Burkitt's lymphoma cells and with increased resistance to apoptosis. J Virol 79, 10709–10717.[CrossRef]
    [Google Scholar]
  20. Kempkes, B., Spitkovsky, D., Jansen-Durr, P., Ellwart, J. W., Kremmer, E., Delecluse, H. J., Rottenberger, C., Bornkamm, G. W. & Hammerschmidt, W. ( 1995; ). B-cell proliferation and induction of early G1-regulating proteins by Epstein–Barr virus mutants conditional for EBNA2. EMBO J 14, 88–96.
    [Google Scholar]
  21. Kolluri, S. K., Bruey-Sedano, N., Cao, X., Lin, B., Lin, F., Han, Y. H., Dawson, M. I. & Zhang, X. K. ( 2003; ). Mitogenic effect of orphan receptor TR3 and its regulation by MEKK1 in lung cancer cells. Mol Cell Biol 23, 8651–8667.[CrossRef]
    [Google Scholar]
  22. Lee, J. M., Lee, K. H., Weidner, M., Osborne, B. A. & Hayward, S. D. ( 2002; ). Epstein–Barr virus EBNA2 blocks Nur77-mediated apoptosis. Proc Natl Acad Sci U S A 99, 11878–11883.[CrossRef]
    [Google Scholar]
  23. Lee, J. M., Lee, K. H., Farrell, C. J., Ling, P. D., Kempkes, B., Park, J. H. & Hayward, S. D. ( 2004; ). EBNA2 is required for protection of latently Epstein–Barr virus-infected B cells against specific apoptotic stimuli. J Virol 78, 12694–12697.[CrossRef]
    [Google Scholar]
  24. Lin, B., Kolluri, S. K., Lin, F., Liu, W., Han, Y. H., Cao, X., Dawson, M. I., Reed, J. C. & Zhang, X. K. ( 2004; ). Conversion of Bcl-2 from protector to killer by interaction with nuclear orphan receptor Nur77/TR3. Cell 116, 527–540.[CrossRef]
    [Google Scholar]
  25. Mosmann, T. ( 1983; ). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65, 55–63.[CrossRef]
    [Google Scholar]
  26. Nicoletti, I., Migliorati, G., Pagliacci, M. C., Grignani, F. & Riccardi, C. ( 1991; ). A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods 139, 271–279.[CrossRef]
    [Google Scholar]
  27. Peng, R., Gordadze, A. V., Fuentes Panana, E. M., Wang, F., Zong, J., Hayward, G. S., Tan, J. & Ling, P. D. ( 2000; ). Sequence and functional analysis of EBNA-LP and EBNA2 proteins from nonhuman primate lymphocryptoviruses. J Virol 74, 379–389.[CrossRef]
    [Google Scholar]
  28. Pulvertaft, J. V. ( 1964; ). Cytology of Burkitt's Tumour (African Lymphoma). Lancet 39, 238–240.
    [Google Scholar]
  29. Sinclair, A. J., Palmero, I., Peters, G. & Farrell, P. J. ( 1994; ). EBNA-2 and EBNA-LP cooperate to cause G0 to G1 transition during immortalization of resting human B lymphocytes by Epstein–Barr virus. EMBO J 13, 3321–3328.
    [Google Scholar]
  30. Thorley-Lawson, D. A. ( 2001; ). Epstein–Barr virus: exploiting the immune system. Nat Rev Immunol 1, 75–82.[CrossRef]
    [Google Scholar]
  31. Tong, X., Drapkin, R., Reinberg, D. & Kieff, E. ( 1995a; ). The 62- and 80-kDa subunits of transcription factor IIH mediate the interaction with Epstein–Barr virus nuclear protein 2. Proc Natl Acad Sci U S A 92, 3259–3263.[CrossRef]
    [Google Scholar]
  32. Tong, X., Drapkin, R., Yalamanchili, R., Mosialos, G. & Kieff, E. ( 1995b; ). The Epstein–Barr virus nuclear protein 2 acidic domain forms a complex with a novel cellular coactivator that can interact with TFIIE. Mol Cell Biol 15, 4735–4744.
    [Google Scholar]
  33. Tong, X., Wang, F., Thut, C. J. & Kieff, E. ( 1995c; ). The Epstein–Barr virus nuclear protein 2 acidic domain can interact with TFIIB, TAF40, and RPA70 but not with TATA-binding protein. J Virol 69, 585–588.
    [Google Scholar]
  34. Wang, L., Grossman, S. R. & Kieff, E. ( 2000; ). Epstein–Barr virus nuclear protein 2 interacts with p300, CBP, and PCAF histone acetyltransferases in activation of the LMP1 promoter. Proc Natl Acad Sci U S A 97, 430–435.[CrossRef]
    [Google Scholar]
  35. Yalamanchili, R., Tong, X., Grossman, S., Johannsen, E., Mosialos, G. & Kieff, E. ( 1994; ). Genetic and biochemical evidence that EBNA 2 interaction with a 63-kDa cellular GTG-binding protein is essential for B lymphocyte growth transformation by EBV. Virology 204, 634–641.[CrossRef]
    [Google Scholar]
  36. Zimber-Strobl, U. & Strobl, L. J. ( 2001; ). EBNA2 and notch signalling in Epstein–Barr virus mediated immortalization of B lymphocytes. Semin Cancer Biol 11, 423–434.[CrossRef]
    [Google Scholar]
  37. Zimber-Strobl, U., Strobl, L. J., Meitinger, C., Hinrichs, R., Sakai, T., Furukawa, T., Honjo, T. & Bornkamm, G. W. ( 1994; ). Epstein–Barr virus nuclear antigen 2 exerts its transactivating function through interaction with recombination signal binding protein RBP-J kappa, the homologue of Drosophila Suppressor of Hairless. EMBO J 13, 4973–4982.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82105-0
Loading
/content/journal/jgv/10.1099/vir.0.82105-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error