1887

Abstract

The Epstein–Barr virus (EBV) nuclear antigen 2 (EBNA2) gene product is the key regulator of the latent genes of EBV and essential for EBV-mediated transformation of human primary B cells. Viral mutants were constructed carrying a deletion of the EBNA2 conserved region 4 (CR4). Primary resting B cells infected with the ΔCR4-EBNA2 mutant virus were dramatically impaired for B cell transformation. Lymphoblastoid cell lines (LCLs) established with this mutant EBV revealed a prolonged population doubling time when cells were cultivated at low cell densities, which are not critical for wild-type-infected cells. Low-level spontaneous cell death occurred when the cells were cultivated at suboptimal cell densities. The phenotype of B cells and LCLs infected with the ΔCR4-EBNA2 mutant virus indicated that the CR4 region of EBNA2 specifically contributes to the viability of the cells rather than affecting cell division rates.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82105-0
2006-11-01
2020-10-30
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/11/3169.html?itemId=/content/journal/jgv/10.1099/vir.0.82105-0&mimeType=html&fmt=ahah

References

  1. Barth S., Liss M., Voss M. D., Dobner T., Fischer U., Meister G., Grasser F. A. 2003; Epstein–Barr virus nuclear antigen 2 binds via its methylated arginine-glycine repeat to the survival motor neuron protein. J Virol 77:5008–5013 [CrossRef]
    [Google Scholar]
  2. Ben-Bassat H., Goldblum N., Mitrani S. & 7 other authors 1977; Establishment in continuous culture of a new type of lymphocyte from a ‘Burkitt like’ malignant lymphoma (line DG-75). Int J Cancer 19:27–33 [CrossRef]
    [Google Scholar]
  3. Cherepanov P. P., Wackernagel W. 1995; Gene disruption in Escherichia coli : TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158:9–14 [CrossRef]
    [Google Scholar]
  4. Cohen J. I., Wang F., Mannick J., Kieff E. 1989; Epstein–Barr virus nuclear protein 2 is a key determinant of lymphocyte transformation. Proc Natl Acad Sci U S A 86:9558–9562 [CrossRef]
    [Google Scholar]
  5. Cohen J. I., Wang F., Kieff E. 1991; Epstein–Barr virus nuclear protein 2 mutations define essential domains for transformation and transactivation. J Virol 65:2545–2554
    [Google Scholar]
  6. Datsenko K. A., Wanner B. L. 2000; One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645 [CrossRef]
    [Google Scholar]
  7. Delecluse H. J., Hilsendegen T., Pich D., Zeidler R., Hammerschmidt W. 1998; Propagation and recovery of intact, infectious Epstein–Barr virus from prokaryotic to human cells. Proc Natl Acad Sci U S A 95:8245–8250 [CrossRef]
    [Google Scholar]
  8. Engler-Blum G., Meier M., Frank J., Muller G. A. 1993; Reduction of background problems in nonradioactive Northern and Southern blot analyses enables higher sensitivity than 32P-based hybridizations. Anal Biochem 210:235–244 [CrossRef]
    [Google Scholar]
  9. Farrell C. J., Lee J. M., Shin E. C., Cebrat M., Cole P. A., Hayward S. D. 2004; Inhibition of Epstein–Barr virus-induced growth proliferation by a nuclear antigen EBNA2-TAT peptide. Proc Natl Acad Sci U S A 101:4625–4630 [CrossRef]
    [Google Scholar]
  10. Graham F. L., Smiley J., Russell W. C., Nairn R. 1977; Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 36:59–74 [CrossRef]
    [Google Scholar]
  11. Hammerschmidt W., Sugden B. 1989; Genetic analysis of immortalizing functions of Epstein–Barr virus in human B lymphocytes. Nature 340:393–397 [CrossRef]
    [Google Scholar]
  12. Henkel T., Ling P. D., Hayward S. D., Peterson M. G. 1994; Mediation of Epstein–Barr virus EBNA2 transactivation by recombination signal-binding protein J kappa. Science 265:92–95 [CrossRef]
    [Google Scholar]
  13. Horan P. K., Melnicoff M. J., Jensen B. D., Slezak S. E. 1990; Fluorescent cell labeling for in vivo and in vitro cell tracking. Methods Cell Biol 33:469–490
    [Google Scholar]
  14. Hsieh J. J., Hayward S. D. 1995; Masking of the CBF1/RBPJ kappa transcriptional repression domain by Epstein–Barr virus EBNA2. Science 268:560–563 [CrossRef]
    [Google Scholar]
  15. Hsieh J. J., Zhou S., Chen L., Young D. B., Hayward S. D. 1999; CIR, a corepressor linking the DNA binding factor CBF1 to the histone deacetylase complex. Proc Natl Acad Sci U S A 96:23–28 [CrossRef]
    [Google Scholar]
  16. Janz A., Oezel M., Kurzeder C., Mautner J., Pich D., Kost M., Hammerschmidt W., Delecluse H. J. 2000; Infectious Epstein–Barr virus lacking major glycoprotein BLLF1 (gp350/220) demonstrates the existence of additional viral ligands. J Virol 74:10142–10152 [CrossRef]
    [Google Scholar]
  17. Kao H. Y., Ordentlich P., Koyano-Nakagawa N., Tang Z., Downes M., Kintner C. R., Evans R. M., Kadesch T. 1998; A histone deacetylase corepressor complex regulates the notch signal transduction pathway. Genes Dev 12:2269–2277 [CrossRef]
    [Google Scholar]
  18. Kavathas P., Bach F. H., DeMars R. 1980; Gamma ray-induced loss of expression of HLA and glyoxalase I alleles in lymphoblastoid cells. Proc Natl Acad Sci U S A 77:4251–4255 [CrossRef]
    [Google Scholar]
  19. Kelly G. L., Milner A. E., Tierney R. J., Croom-Carter D. S., Altmann M., Hammerschmidt W., Bell A. I., Rickinson A. B. 2005; Epstein–Barr virus nuclear antigen 2 (EBNA2) gene deletion is consistently linked with EBNA3A, -3B, and -3C expression in Burkitt's lymphoma cells and with increased resistance to apoptosis. J Virol 79:10709–10717 [CrossRef]
    [Google Scholar]
  20. Kempkes B., Spitkovsky D., Jansen-Durr P., Ellwart J. W., Kremmer E., Delecluse H. J., Rottenberger C., Bornkamm G. W., Hammerschmidt W. 1995; B-cell proliferation and induction of early G1-regulating proteins by Epstein–Barr virus mutants conditional for EBNA2. EMBO J 14:88–96
    [Google Scholar]
  21. Kolluri S. K., Bruey-Sedano N., Cao X., Lin B., Lin F., Han Y. H., Dawson M. I., Zhang X. K. 2003; Mitogenic effect of orphan receptor TR3 and its regulation by MEKK1 in lung cancer cells. Mol Cell Biol 23:8651–8667 [CrossRef]
    [Google Scholar]
  22. Lee J. M., Lee K. H., Weidner M., Osborne B. A., Hayward S. D. 2002; Epstein–Barr virus EBNA2 blocks Nur77-mediated apoptosis. Proc Natl Acad Sci U S A 99:11878–11883 [CrossRef]
    [Google Scholar]
  23. Lee J. M., Lee K. H., Farrell C. J., Ling P. D., Kempkes B., Park J. H., Hayward S. D. 2004; EBNA2 is required for protection of latently Epstein–Barr virus-infected B cells against specific apoptotic stimuli. J Virol 78:12694–12697 [CrossRef]
    [Google Scholar]
  24. Lin B., Kolluri S. K., Lin F., Liu W., Han Y. H., Cao X., Dawson M. I., Reed J. C., Zhang X. K. 2004; Conversion of Bcl-2 from protector to killer by interaction with nuclear orphan receptor Nur77/TR3. Cell 116:527–540 [CrossRef]
    [Google Scholar]
  25. Mosmann T. 1983; Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63 [CrossRef]
    [Google Scholar]
  26. Nicoletti I., Migliorati G., Pagliacci M. C., Grignani F., Riccardi C. 1991; A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods 139:271–279 [CrossRef]
    [Google Scholar]
  27. Peng R., Gordadze A. V., Fuentes Panana E. M., Wang F., Zong J., Hayward G. S., Tan J., Ling P. D. 2000; Sequence and functional analysis of EBNA-LP and EBNA2 proteins from nonhuman primate lymphocryptoviruses. J Virol 74:379–389 [CrossRef]
    [Google Scholar]
  28. Pulvertaft J. V. 1964; Cytology of Burkitt's Tumour (African Lymphoma). Lancet 39:238–240
    [Google Scholar]
  29. Sinclair A. J., Palmero I., Peters G., Farrell P. J. 1994; EBNA-2 and EBNA-LP cooperate to cause G0 to G1 transition during immortalization of resting human B lymphocytes by Epstein–Barr virus. EMBO J 13:3321–3328
    [Google Scholar]
  30. Thorley-Lawson D. A. 2001; Epstein–Barr virus: exploiting the immune system. Nat Rev Immunol 1:75–82 [CrossRef]
    [Google Scholar]
  31. Tong X., Drapkin R., Reinberg D., Kieff E. 1995a; The 62- and 80-kDa subunits of transcription factor IIH mediate the interaction with Epstein–Barr virus nuclear protein 2. Proc Natl Acad Sci U S A 92:3259–3263 [CrossRef]
    [Google Scholar]
  32. Tong X., Drapkin R., Yalamanchili R., Mosialos G., Kieff E. 1995b; The Epstein–Barr virus nuclear protein 2 acidic domain forms a complex with a novel cellular coactivator that can interact with TFIIE. Mol Cell Biol 15:4735–4744
    [Google Scholar]
  33. Tong X., Wang F., Thut C. J., Kieff E. 1995c; The Epstein–Barr virus nuclear protein 2 acidic domain can interact with TFIIB, TAF40, and RPA70 but not with TATA-binding protein. J Virol 69:585–588
    [Google Scholar]
  34. Wang L., Grossman S. R., Kieff E. 2000; Epstein–Barr virus nuclear protein 2 interacts with p300, CBP, and PCAF histone acetyltransferases in activation of the LMP1 promoter. Proc Natl Acad Sci U S A 97:430–435 [CrossRef]
    [Google Scholar]
  35. Yalamanchili R., Tong X., Grossman S., Johannsen E., Mosialos G., Kieff E. 1994; Genetic and biochemical evidence that EBNA 2 interaction with a 63-kDa cellular GTG-binding protein is essential for B lymphocyte growth transformation by EBV. Virology 204:634–641 [CrossRef]
    [Google Scholar]
  36. Zimber-Strobl U., Strobl L. J. 2001; EBNA2 and notch signalling in Epstein–Barr virus mediated immortalization of B lymphocytes. Semin Cancer Biol 11:423–434 [CrossRef]
    [Google Scholar]
  37. Zimber-Strobl U., Strobl L. J., Meitinger C., Hinrichs R., Sakai T., Furukawa T., Honjo T., Bornkamm G. W. 1994; Epstein–Barr virus nuclear antigen 2 exerts its transactivating function through interaction with recombination signal binding protein RBP-J kappa, the homologue of Drosophila Suppressor of Hairless. EMBO J 13:4973–4982
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82105-0
Loading
/content/journal/jgv/10.1099/vir.0.82105-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error